RGFUZZ: Rule-Guided Fuzzer for WebAssembly Runtimes

Junyoung Park Yunho Kim* Insu Yun*
KAIST Hanyang University KAIST
School of Department of School of
Electrical Engineering Computer Science Electrical Engineering
parkjuny@kaist.ac.kr yunhokim@ hanyang.ac.kr insuyun @kaist.ac.kr

Abstract—WebAssembly runtimes embed compilers to compile
WebAssembly code into machine code for execution. These
compilers use various compiler rules to define how to optimize
and lower the WebAssembly code. However, existing testing
tools struggle to explore these rules effectively due to their
complexity. Moreover, they cannot generate test cases diversely
due to their limitations, which can result in undetected bugs.

This paper presents RGFUZz, a differential fuzzer for We-
bAssembly runtimes, addressing the existing limitations through
two novel techniques. First, RGFUZZ uses rule-guided fuzzing,
which extracts compiler rules from the WebAssembly runtime,
wasmtime, and uses them to guide test case generation, thereby
effectively exploring complex rules. Second, RGFUZZ uses
reverse stack-based generation to generate test cases diversely.
These techniques enable RGFUZZ to find bugs effectively
in WebAssembly runtimes. We implemented RGFuzz and
evaluated it on six engines: wasmtime, Wasmer, WasmEdge,
V8, SpiderMonkey, and JavaScriptCore. As a result, RGFUzzZ
found 20 new bugs in these engines, including one bug with a
CVE ID issued. Our evaluation demonstrates that RGFuzz
outperforms existing fuzzers by utilizing the extracted rules
and diversely generating test cases.

1. Introduction

WebAssembly [1] is a novel programming language in-
troduced in 2017 [2], featuring a compact and portable binary
format that performs at near-native execution speeds. Since
its introduction in 2017, WebAssembly has been supported
by all major web browsers, such as Chrome, Firefox, and
Safari. Its versatility makes it a portable compilation target
for other programming languages, such as C/C++ and Rust.
WebAssembly now extends beyond web use to applications
like smart contracts [3], [4], edge cloud services [5], [6], [7],
[8], and image processing [9].

Various WebAssembly runtimes have been developed to
execute WebAssembly. Such runtimes (e.g., wasmtime [10],
Wasmer [11], and WasmEdge [12]) optimize and lower We-
bAssembly code into machine code, which is then executed
in the host machine. These runtimes use various compiler

* Co-corresponding authors

rules to achieve this, defining how to compile WebAssembly
code into efficient machine code. Notably, WebAssembly
runtimes must be correct. Otherwise, they can break the
security guarantees of WebAssembly, which requires the
code to execute correctly and safely.

To uncover bugs in WebAssembly runtimes, one of the
most widely used techniques in existing works is fuzzing [13],
[14], [15], [16], [17], [18], [19], [20]. While these works
have successfully found bugs, they have two limitations.
First, they fail to test complex compiler rules, which require
specific sequences of certain instructions to trigger them. As
existing fuzzers solely rely on the WebAssembly specification
and random generation, it is hard for them to generate test
cases to test these rules. Second, these fuzzers often limit
the diversity of test cases. They focus on generating correct
test cases to avoid rejections during the early validation of
WebAssembly. However, they may sacrifice diversity in favor
of correctness, limiting effectiveness in finding bugs.

To address the limitations of existing fuzzers, we present
RGFUZz, the Rule Guided Fuzzer for WebAssembly run-
times. RGFUZzz is a differential fuzzer with two novel
techniques: rule-guided fuzzing and reverse stack-based
generation. RGFUZZz uses compiler rules in one WebAssem-
bly runtime, wasmtime, and generates test cases based
on the rules. This allows RGFUZz to effectively test the
runtimes by generating test cases that can trigger the rules.
Moreover, RGFUZz employs a new test case generation
method, reverse-stack based generation, to generate correct
and diverse test cases. This also improves the effectiveness
of differential fuzzing, making RGFUZzz more effective in
finding bugs in WebAssembly runtimes.

Unfortunately, using the compiler rules in WebAssembly
runtimes for fuzzing is not straightforward. Thanks to the
recent trends in a WebAssembly runtime, like wasmtime, we
can easily extract compiler rules in WebAssembly runtimes.
These runtimes define compiler rules using the machine-
friendly Domain-Specific Language (DSL). However, these
rules translate and optimize their Intermediate Representa-
tions (IRs), not WebAssembly instructions. As a result, we
need to know how WebAssembly instructions are translated
to IRs to use these rules in RGFuzz.

To address this issue, RGFUzz learns the map-
ping between WebAssembly instructions and IRs in two

steps: instruction-level inference and recursive substitution.
RGFuzz first compiles each WebAssembly instruction to
IRs to infer their mapping. However, this is not enough as
many IRs are not directly converted from WebAssembly
instructions but from other IRs. Thus, as its second step,
RGFUZzz recursively substitutes the IRs with the correspond-
ing rules to extend the mapping to these IRs.

RGFuUzz also introduces a new test case generation
method called reverse stack-based generation. Reverse stack-
based generation tracks the stack types while generating
WebAssembly instructions, allowing the correctness of the
generated test cases. This way also enables RGFuUzz to
improve its diversity. Our key insight is that WebAssembly
instructions have only zero or one return type, which is more
straightforward to satisfy than parameter types. Therefore, if
we generate instructions in the reverse order, we can generate
more diverse instructions without considering complex stack
constraints for their parameters.

We implemented the prototype of RGFUZz and eval-
uated it on six engines: wasmtime [10], Wasmer [11],
WasmEdge [12], V8 [21], SpiderMonkey [22], and JavaScript-
Core [23]. As a result, RGFuUzz found 20 new bugs in these
engines, including one bug with a CVE ID issued. RGFuzz
could find these bugs effectively using the extracted rules
and diversely generating test cases.

The contributions of our work are the following:

e We present RGFUZZ, a differential fuzzer for We-
bAssembly runtimes with two novel techniques: rule-
guided fuzzing and reverse stack-based generation.

e We evaluate RGFUZZ on six WebAssembly engines
and demonstrate its effectiveness. Notably, RGFuzz
could discover 20 new bugs in these engines, including
one bug with a CVE ID issued.

« We open-source RGFUZzZ to foster further research in
this area: https://github.com/kaist-hacking/RGFuzz

2. Background

2.1. WebAssembly Runtimes

To evaluate WebAssembly, we require WebAssembly
runtime, a software that can execute WebAssembly programs
like wasmtime [10], Wasmer [11], or runtimes for browsers
(e.g., SpiderMonkey [22] or V8 [21]). This subsection will
briefly introduce how WebAssembly runtimes work and why
they are important.

Workflow. WebAssembly runtimes compile WebAssembly
programs into machine code to provide near-native speed.
Since WebAssembly is a low-level, assembly-like language,
it can be easily compiled into machine code. For example,
the function in Figure 1 directly translates into a single
multiplication instruction with a constant of two. To further
boost the speed, the runtimes can apply more aggressive
optimizations. For example, Figure 1 can be compiled into
multiplication initially, but it can be further optimized into
addition (arg®+arg®) if we enable high optimization levels.

N L A W —

(func $mul2 (param i32) (result i32)

;5 stack: []
local.get O ;; stack: [arg0]
i32.const 2 ;; stack: [arg0®, 2]
i32.mul ;; stack: [arg® * 2]

; mul2(arg®) => argl® * 2

Figure 1: An example of a WebAssembly function that multiplies
an argument by two.

Safety. WebAssembly provides a thoroughly secure execu-
tion environment for each instance by offering isolation [24],
[25]. Thanks to its strong security, WebAssembly is being
applied to various security-critical applications, such as
smart contracts [3] or distributed systems [6]. To realize
this, WebAssembly implements 1) a strict type system, 2)
memory safety through separation and boundary checks, and
3) control flow integrity. First, WebAssembly employs a strict
type system validated at compile time. Before compiling
modules, the runtime performs type and sanity checks. If a
module fails these checks, it is rejected and not compiled.
Second, WebAssembly ensures memory safety through sepa-
ration and boundary checks. It uses linear memory regions
isolated from call stacks, locals, and the runtime stack. All
memory accesses use offsets, preventing arbitrary memory
access via raw pointers. Programs are also restricted from
accessing memory outside predefined boundaries. Finally,
WebAssembly maintains control flow integrity. Function calls
and branches must target valid destinations, and indirect calls
undergo runtime type signature checks, trapping on failure.
The call stack is isolated from the runtime stack to protect
return addresses from overflows.

Stack types. WebAssembly defines stack types, a se-
quence of types that describe how instructions manip-
ulate the runtime stack. These types are defined as
[¢1]1 -> [¢3], where t] and t¢5 are type sequences. For
example, [i32 i64] -> [£32 £64] describes a stack type
that takes two values of i32 and i64 from the top of the
stack and returns two values of £32 and £64 to the stack.
WebAssembly enforces conditions on the stack types
in specific instructions during validation. For example, We-
bAssembly requires the same changes in the stack types for
the block instruction. If a block has a stack type of [] ->
[i64 164], the stack should result in the same state regardless
of how the block is executed (e.g., through conditional
branches or loops). WebAssembly runtime validates this
condition before execution. As a result, if this condition is
not met, the module is considered invalid and rejected early.

2.2. WebAssembly Runtime Fuzzing

One of the most promising ways to test WebAssembly
runtimes is fuzzing. In fuzzing, it is crucial to generate valid
test cases that can pass the validation stage of the runtime.
To generate valid test cases, existing works have adopted
two main approaches: AST (Abstract Syntax Tree)-based
generation and stack-based generation.

https://github.com/kaist-hacking/RGFuzz

® block Instructions Stack

@ select ® end J [132]
i32 i32 3 i32.add seleet [132 132]
@ block [i32]
@ i32.add ;7 »
[132] @ end [i32 132 132

(a) AST-based generation that re- (b) Stack-based generation that re-
stricts diverse stack types. stricts diverse instructions.

Figure 2: Existing approaches to generate WebAssembly test cases
and their limitations.

AST-based generation. AST-based generation, used in many
fuzzers like Xsmith [20], generates test cases recursively
starting from the return type of a function. This is the same
as the ordinary grammar-based fuzzing [26], [27], [28]. In
particular, this kind of fuzzer first checks the type on the AST
and generates the corresponding instruction that can result
in the specific type. It repeats this process until no more
leaf nodes are in the AST or the maximum depth is reached.
For example, Figure 2a shows how AST-based generation
works when the return type of a function is i32. In this case,
the fuzzer randomly generates an instruction that returns
i32, such as i32.add. After generating this instruction, the
fuzzer adds its parameter types as child nodes (e.g., two i32
for i32.add), repeating this process on the children until it
finishes generation. This approach is intuitive but limited in
handling diverse stack types (see Section 3.3).

Stack-based generation. A new approach called stack-
based generation has been proposed to support diverse stack
types. Stack-based generation, used in fuzzers like Wasm-
smith [17], generates test cases while tracking the stack states.
Whenever this type of fuzzer generates a new instruction, it
checks the current stack state and decides which instructions
can be generated based on the current stack. This is useful
to satisfy the stack type constraints in WebAssembly, as it
tracks the stack while generating test cases. For example,
as shown in Figure 2b, if it finds two 132 values at the top
of the stack, the fuzzer can generate an i32.add instruction.
After that, it pops two 132 values and pushes the result of
the addition, which is i32, back to the stack. By repeating
this, the fuzzer can generate a valid test case that conforms
to the WebAssembly specification. This is good for handling
diverse stack types. However, unlike AST-based generation,
it limits the flexibility of generating test cases, making it
difficult to generate diverse instructions (see Section 3.3).

2.3. Cranelift ISLE

Cranelift ISLE (Instruction Selection Lowering
Expressions) [29] is a domain-specific language that defines
optimization and instruction lowering rules in the Cranelift
compiler of wasmtime [10]. It is designed to aid developers
define compiler components more naturally, while enabling
machine tools to interpret the semantics of the rules more
effectively. ISLE defines these rules as rewriting rules [30],
written in an S-expression syntax with a left-hand side

% N U kWD —

;; (x # -1) can be replaced with the ‘bnot‘ instruction

2| (rule (simplify (bxor ty x (iconst ty k)))

(if-let -1 (i64_sextend_imm64 ty k))
(bnot ty x))

(a) An optimization rule for bnot.

‘or(and(x, y), not(y)) == or(x, not(y))"*

| (rule (simplify (bor ty

(band ty x y)
z @ (bnot ty y)))
(bor ty x z))

(b) A complex optimization rule for bor.

local.get 0 ;; x

local.get 1 ;; vy

i64.and ;; band x y

local.get 1 ;; vy

i64.const -1 ;; -1

i64.xor ;; xor y -1 -> bnot y

bor
y) (bnot y)) -> (bor x (bnot y))

i64.or HH
; (bor (band x

(¢) Minimal WebAssembly code to trigger the rule in Figure 3b.

Figure 3: Examples of rules written in Cranelift ISLE.

(LHS) and a right-hand side (RHS). ISLE rules match
expressions with patterns on LHS and rewrite them with
RHS expressions. Optimization rules are defined as rewriting
rules between Intermediate Representation (IR) expressions,
while instruction lowering rules define rewriting rules from
IR to architecture-specific low-level IR.

Figure 3a shows an example of an ISLE optimization rule,
which rewrites x xor -1 into a bnot expression. To describe
optimization, ISLE uses a top-level term simplify that takes
an expression as its argument. The LHS of the example
rule is (bxor ty x (iconst ty k)), defining a pattern that
matches a xor operation with x and a constant of k, where x,
k being the arguments and ty being the type of the expression.
After matching expressions to the LHS, they are rewritten
into the expression in the RHS.

ISLE rules may include rule conditions that constrain the
expressions using if-let clauses, which define conditions
with LHS and RHS. To utilize the rule, IRs must satisfy
the LHS = RHS condition. Figure 3a contains an if-let
clause, which checks if the sign-extended value of k to 64-bit
equals the value of -1. Due to the condition, the rule only
allows an argument k to be the value equal to -1.

ISLE rules also define directives, which are internal
expressions that are used to seamlessly connect ISLE rules
to the other compiler components. These directives may
define operations that cannot be easily expressed in ISLE.
For example, 164_sextend_imm64 in Figure 3a defines a sign-
extension operation of k to the type of i64. More examples
include fits_in_64, which limits the type of expression to
the integer types of bit-width lesser or equal to 64.

3. Challenges & Our Approaches

In this section, we will describe the technical challenges
and our approaches to address these challenges.

EXTRACTOR — GENERATOR TESTER
3 } [Architectures]
) Instruction-level Typing Rev. Stack-based Generator ayrecoe o dsiio
WebAssembly Inference Rules =3
Specification Recursive . X o [Optimization]
é Substitution — | Lazy Function Signatures 5';:2:;%:1
ISLE Condition-aware pr— Test Cases Inconsistent
Rule Parsin ; Results
— 9 Operand selection

Ceewi

Compiler Production

Rules Rules

Figure 4: Overview of RGFuUzzZ.

3.1. Complex compiler rules

Challenge. Current WebAssembly fuzzers are not effective
in exploring complex compiler rules. This is because they
only consider the WebAssembly specification [31] and do
not consider the actual runtime implementation. For example,
wasmtime has an optimization rule like Figure 3b with
three IRs: bor, band, and bnot. To trigger the rule, the test
case must contain three IRs with their correct positions
and arguments. According to our preliminary study, existing
fuzzers, Wasm-smith [17] and Xsmith [20], fail to generate a
test case for this rule within 24 hours. To test this rule,
a fuzzer needs to exactly generate a sequence of four
instructions: i64.and, i64.const -1, i64.xor, and i64.or,
including three auxiliary local.get instructions that indicate
the correct arguments (see, Figure 3c). This is too challenging
for traditional fuzzers that only rely on the WebAssembly
specification, which primarily consists of typing rules.

Solution. To effectively explore these complex compiler
rules, our system RGFUZz employs a technique called rule-
guided fuzzing. In particular, RGFUzz directly utilizes these
rules in the WebAssembly runtime wasmtime, written in
the Cranelift ISLE, for fuzzing. Previously, WebAssembly
runtimes tightly coupled these rules with their implementa-
tions, written in ordinary languages (e.g., C, C++), making it
difficult to extract the rules as these languages are challenging
to analyze. Meanwhile, ISLE introduces a new opportunity;
it defines the rules in its machine-friendly language, making
it easy to extract the rules and understand their semantics.

3.2. Difficulty in mapping WebAssembly and IR

Challenge. Even after we decide to use the Cranelift rules
for fuzzing, this is not trivial because these rules are written
in Cranelift IRs, but we need to generate test cases in
WebAssembly. It might be possible to directly use IRs for
fuzzing (e.g., Fuzzgen [16]). However, it has limitations in
terms of portability and coverage; such an IR-based fuzzer
cannot be easily adapted to fuzz other runtimes and cannot
cover bugs related to WebAssembly to IR translation.
Matching IR to WebAssembly is not always straightfor-
ward. Figure 3b shows an example of why this could be
challenging. In this example, we might easily guess that band
and bor in IR will be matched with i64.and and i64.or in

WebAssembly, respectively. However, this direct matching
is not always possible; bnot in IR is not directly matched
with any WebAssembly instructions because WebAssembly
has no instruction like i64.not. To understand this IR, we
need to understand another rule in Figure 3a, which rewrites
x xor -1to bnot. This demonstrates that we must understand
multiple rules to fully understand their mapping.

Solution. To match IR with WebAssembly, RGFUZzz uses
instruction-level inference and recursive substitution. First,
RGFUzz infers the direct matching between WebAssembly
and IR. For that, RGFUZz iteratively compiles every We-
bAssembly into IR and finds the mapping between them.
Unfortunately, this is insufficient for certain IRs, like bnot
in Figure 3b. Second, to support such cases, RGFuzz
repeatedly substitutes other rules to build more mappings.
For example, RGFUZzZ can substitute the rule in Figure 3a
to build bnot from i64.const -1 and i64.xor.

3.3. Non-diverse test case generation

Challenge. We observed that existing WebAssembly runtime
fuzzers are ineffective in generating diverse test cases. In
particular, we found that both AST-based and stack-based
program generations have their limitations.

AST-based generation: Non-diverse structures. AST-based
program generation limits producing diverse structures (e.g.,
block or loop) due to its insufficient support for stack types.
Notably, the AST-based fuzzer can only generate instruction
sequences with a single return type (e.g., 132). This prevents
the fuzzer from generating diverse control flow structures like
blocks or loops, which can have multiple types of returns and
parameters simultaneously. In fact, we observed that Xsmith,
an AST-based fuzzer, generates a control-flow structure with
a pre-defined template (e.g., block (result i32)), which
is less flexible than the one defined in the WebAssembly
specification.

Stack-based generation: Non-diverse instructions. Stack-
based generation tracks the stack states, allowing it to
generate more diverse structures; however, it generates certain
instructions much less frequently than others. This is because
these instructions require specific stack states that are less
likely to happen in a random generation. For example,
v128.bitselect instruction requires three operands to be
located on top of the stack, and their types should be all

the same as v128. Unfortunately, this is extremely rare to
be satisfied by a random generation without any guidance.
According to our evaluation (Section 6.3), Wasm-smith [17],
which employs stack-based generation, could only generate
only 28 v128.bitselect instructions among 100k test cases.
Solution. To address these limitations, RGFUZzZ suggests
reverse stack-based generation to generate diverse test cases.
This approach combines the advantages of both AST-based
and stack-based generation. In particular, RGFUZZ generates
test cases from the return types of the functions like AST-
based generation, while tracking the stack states like stack-
based generation does. This allows RGFUZzZ to generate test
cases to have more diverse structures and instructions.

4. Design

4.1. Overview

Figure 4 illustrates the high-level view of RGFUzz. It has
three main components: 1) EXTRACTOR, 2) GENERATOR,
and 3) TESTER. Initially, EXTRACTOR extracts optimization
and lowering rules from the Cranelift compiler. To understand
the relationships between the WebAssembly instructions
and the IRs, EXTRACTOR uses instruction-level inference
and recursive substitution. Then, it translates these rules
into production rules that describe which WebAssembly
instructions can trigger the corresponding compiler rules.
Next, GENERATOR produces WebAssembly modules using
the rules acquired from EXTRACTOR and the typing rules
from the WebAssembly specification. To generate diverse test
cases, GENERATOR adopts reverse stack-based generation,
carefully determining the function signatures and operands.
Finally, TESTER runs these modules in the WebAssembly run-
times with diverse architectures and optimizations. TESTER
compares the results of multiple executions to identify any
mismatches that indicate potential runtime bugs.

4.2. Rule-guided fuzzing

RGFuzz converts the Cranelift ISLE rules into pro-
duction rules for fuzzing through a two-step process: 1)
instruction-level inference and 2) recursive substitution.

4.2.1. Preprocessing: Condition-aware rule parsing. To
build production rules, RGFuUzz first needs to parse the
ISLE rules. These rules are complicated and contain many
directives and conditional expressions. We need to handle
these directives and conditions properly to fully understand
the semantics of the rules. In the following, we discuss how
RGFuzz preprocesses ISLE rules.

Directives. To handle directives in the ISLE rules (e.g.,
i64_sextend_imm64 in Figure 3a), RGFUZZ embeds a man-
ually written handler for each directive, which converts them
into conditions on the operands. These conditions will be
used in the matching and test case generation processes. For
instance, i64_sextend_imm64 is to sign-extend the operand
to a 64-bit integer. Then, RGFUzZ’s handler will mark

. (module
i32.add (func (param i32 i32) (result i32)
i32.sub local.get]
i32.and lo get 1
i32.or i32.and)
)
WebAssembly Synthesized module based on

instructions the instruction’s type

function func(i32, i32) ->
blockO(v0: i32, vl: i32):
va band v0, vl
jump blockl (v4)

132 fast {

Cranelift
compiler

The most unique IR

blockl (v3: i32): in the module!
return v3

Compiled module

Figure 5: RGFuzz’s instruction-level inference to infer a direct
mapping between a WebAssembly instruction and an IR.

this condition on the operand. After that, when RGFUzZz
generates a test case, it generates a random operand while
satisfying this condition.

if-let clause. if-let clauses in ISLE rules are handled
similarly to the directives. As we mentioned before, the
if-let clause describes the condition that should be satisfied
to apply the rule. For example, in Figure 3a, this optimization
rule is only applied when the constant k equals -1 after the
sign extension. RGFUZzz also tracks this condition and uses it
to further process. Currently, RGFUZZ only supports simple
if-let clauses, such as binary operations with constants.

4.2.2. Instruction-level inference. Then, RGFUZz infers
a direct mapping between a WebAsembly instruction and
an IR. For example, in this step, RGFUZZ learns that the
WebAssembly instructions, 164 .and and i64.or correspond
to the IRs band, and bor, respectively (Figure 3b).

To this end, RGFUZz iterates over all WebAssembly
instructions and infers corresponding IRs, as illustrated in
Figure 5. In more detail, initially, RGFUZz wraps each
WebAssembly instruction with a WebAssembly module based
on its parameter and return types. This is required as the
Cranelift compiler accepts only a module as an input. Then,
RGFuzz translates the WebAssembly module into an IR
module using the Cranelift compiler. Unfortunately, the
compiled module contains many non-canonical IRs, which
are not directly related to the WebAssembly instruction of
interest. For example, as shown in Figure 5, the compiled
module for i32.and contains block-related IRs and control
flow IRs, which are not directly related to the instruction.
These non-canonical IRs could be more diverse according
to the types of WebAssembly instructions. For example,
the i32.eq instruction in WebAssembly will contain the
unsigned extension IRs (i.e., uextend.i32) as the Cranelift
compiler returns the comparison results as 8-bit integers (i.e.,
icmp eq), which are then extended to 32-bit integers.

To filter out mappings related to non-canonical IRs,
RGFUZz uses a heuristics method that analyzes all compiled
IRs and chooses the most unique ones as canonical. In more
detail, it first filters out the IRs related to control flow (e.g.,

bor bor
(i32.0r) A
— — x bnot

(i 5o d) bnft » |

— v
X y y \d}/é Target rule (ISLE)
Wy
bxor 2%
(132.xo0r)
— T
X iconst bnot
(132.const) » l
M X
sext (k) == -1 Substituting rule (ISLE)

= y y i32.const

v
Production rule k
(WebAssembly) sext (k) == -1

Figure 6: RGFUzZ’s recursive substitution for Figure 3b. The
green text indicates WebAssembly instructions from the instruction-
level inference, and the grey box indicates the condition from the
condition-aware rule parsing. Even though the rule contains non-
trivial IRs like bnot, RGFUZZ can convert the ISLE rule into a
production rule by substituting other rules (marked with red boxes).

blockN, jump, and return) since they are not directly related
to the WebAssembly instructions. Then, RGFUZZ prioritizes
the mappings that contain the unique IRs, focusing on the
instructions that translate to the smallest number of IRs.
For example, uextend IRs, generated by both extension
and comparison instructions, are more closely related to
extension instructions. The extension instructions translate
into fewer IRs since they only contain uextend IRs, while
comparison instructions translate into both uextend (i.e., for
type conversion) and comparison IRs. Therefore, RGFuUzz
excludes the comparison instructions from the mapping
following the heuristics.

4.2.3. Recursive substitution. Next, RGFUZz modifies the
ISLE rule into production rules for fuzzing. These production
rules express the LHS (Left Hand Side) of the ISLE rule in
WebAssembly, allowing it to trigger this specific ISLE rule
with a higher probability than a random generation.

This process is divided into two stages: instruction-
level substitution and rule-level substitution. In instruction-
level substitution, RGFUZz uses the inference results from
the previous step (§4.2.2) to substitute IRs in the ISLE
rule with corresponding WebAssembly instructions. For
example, in Figure 6, the IR band is substituted with the
WebAssembly instruction i64.and. Unfortunately, this is not
enough to convert the ISLE rule into production rules due
to the presence of non-trivial IRs like bnot. To address this
issue, RGFUZz uses the rule-level substitution. In this step,
RGFuzz iterates over other ISLE rules and attempts to
identify ISLE rules that contain the non-trivial IR in their

Global rng : a random number generator

Input func : the current function on generation

Input rets : return types of this block

Input depth : a depth of the current block

Input targetStack: a desired stack after generation

Output block : a generated WebAssembly block

def genBlock(func, rets, depth=0, targetStack=None):
stack = rets
instrs = []

while not rng.terminate():
if rng.genStruct() and depth < MAX_DEPTH:
instrs, stack =\
genStruct (func, stack, instrs,
continue

depth)

if not stack.isEmpty() and rng.consumeStack():

newType = stack.pop()
else:
newType = None

if newType is None or rng.useRule():
rule = rng.choice(getRules(newType))
stack += rule.params
instrs += genOperands(func, rule.instrs)
else:
if rng.genConst(newType):
instrs.append(genConstInstr (newType))
elif rng.genFuncArg(newType):
arg = func.allocOrReuseArg(newType)
instrs.append(genlLocalGet (arg))

if targetStack is not None:
stack, instrs =\
massageTypes (func, stack, instrs,
assert stack targetStack

targetStack)

return Block(instrs, rets, params=stack)

Figure 7: The algorithm of reverse stack-based test case generation.

RHS. Then, RGFuzz uses pattern matching to check if
the rule can be substituted with the target rule. If this is
the case, RGFUzz substitutes the non-trivial IR with the
LHS of the target rule. For example, in Figure 6, the IR
bnot is replaced with the LHS of the rule in Figure 3a.
Finally, RGFUzz converts the ISLE rule into production
rules by repeating this process until all non-trivial IRs are
replaced with WebAssembly instructions. Notably, RGFuzz
maintains the conditions for each operand during this step,
which will be used in the test case generation.

RGFuzz also employs a pruning technique to prevent
the explosion of the number of production rules during this
rule-level substitution. Notably, rule-level substitution can
infinitely expand in many cases. For instance, if some rules
contain recursion, where an expression appears in both the
LHS and RHS of the rule, the rules can be indefinitely
expanded if we repeatedly use the rule in the substitution.
To mitigate this, RGFUZz substitutes a rule only if it has
not been derived from another rule substitution. For example,
as shown in Figure 6, the bor rule will not be used for
substituting other rules since it is derived from the bnot rule.

4.3. Reverse stack-based generation

Then, RGFUZz uses reverse stack-based generation to
generate test cases. For that, RGFUZZ uses typing rules,

5| def genStruct(func, stack, instrs,

rng, func, depth: see genBlock
2| # Input stack : a current stack state (reverse)
3| # Input instrs: current generated instructions (reverse)

Output instrs, stack

depth):
kind = rng.chooseStructKind ()
func.labels.push(kind, stack)

rets = stack.popN(n=rng.randIndex())

if kind == BLOCK or kind == LOOP:
block = genBlock(func, rets, depth+1)
block.instrs = [End()] + block.instrs \
+ [Instr(kind)]
elif kind == IF:

ifBlock = genBlock(func, rets, depth+1)
endBlock = genBlock(func, rets, depth+l1,
ifBlock.params)
instrs = [End()] + endBlock.instrs + \
[Else()] + ifBlock.instrs + \
[IfO]
block = Block(instrs, rets, ifBlock.params)

elif kind == CALL:
block = genCall(stack, instrs, rets)
else: # kind == BR
brCandidates = func.labels.match(stack)
if len(brCandidates) == 0:
return # No label to branch
brTarget = rng.choice(brCandidates)
brInstr,brStack = genBr(func, stack,
instrs.append(brInstr)
stack = brStack

brTarget)

instrs += block.instrs
stack += block.params
return instrs, stack

Figure 8: The algorithm of control structure generation.

which define types of WebAssembly instructions from the
specification [31], with the production rules.

Reverse stack-based generation. Figure 7 shows the
generation algorithm of RGFuUZzz. As shown in the algorithm,
RGFuUzz tracks stack while in generation, but reversely
unlike other stack-based generators. At line 8, RGFuzz
initializes stack with the return types. Then, RGFUZZ re-
peatedly generates instructions until the termination condition
is met (Line 10). In particular, RGFUZZ can generate a
control structure (e.g., block, loop, if), arbitrary instructions
based on rules, constant instructions, or local variable in-
structions (Lines 11-14, 21-24, 26-27, 28-30, respectively).
RGFuzz’s structure generation algorithm will be explained
in the next part. Notably, RGFUzZ pops the return types
of the instructions or structures (Line 17) and pushes their
parameter types back to the stack (Line 23). This is reversed
from the existing stack-based generators, which pops the
parameters and pushes the returns to the stack.

The key intuition of our approach is that the constraints
of the instructions are easier to satisfy if we deal with their
return types instead of the parameter types. In particular, in
WebAssembly, all instructions have only O or 1 return type,
allowing us to easily match instructions to the current stack
states based on their return types. However, the existing
stack-based method focuses on satisfying parameter types,
which are more complex and challenging. For example, as we
mentioned before, the v128.bitselect instruction requires
generating three v128 operands at the top of the stack, which

is extremely unlikely to happen in the random generation.

RGFuUzz performs type massaging to adjust the stack
state if we have a specific stack state to satisfy (targetStack
in Line 34). For example, the if structure requires the stack
state to be the same at both ends of the if block and the
else block. To satisfy this, RGFUzz sets the target stack
state of the else block with the if block’s type.

Type massaging works by popping non-matching types
from the stack and pushing missing types. First, RGFuUzz
pops non-matching types from the stack using arguments
and constants, as they have types of [] -> [t] for t being
their type. When these instructions are generated, one type
is popped from the stack while no type is pushed back,
as RGFUzz builds the stack reversely. Second, RGFuzz
pushes missing types with memory stores, which have types
of [132 t] -> []. While nothing is popped from the stack
because there is no return type, type t is pushed to the stack.

Lazy function signatures. Unlike other differential fuzzers
for WebAssembly [15], [18], [20], [32], RGFuzz lazily
determines its function signature; it generates the function
body first and then determines the function signature based
on the generated body. In differential testing, the return value
of a function is represented as a relation among its function
arguments (e.g., mul2(x) = x*2). If we define the function
signature before generating the function body, we should
replace any value with a constant if the given arguments
cannot represent it. For instance, in a select instruction,
whose third operand must always be of type 132, if our
function arguments do not include 32, this operand must be
expressed as a constant. However, this can lead to constant
propagation, making us unable to explore more complex
optimizations for the select instruction. To prevent this,
RGFuUzz dynamically allocates variables while generating
instructions and then determines the function signature based
on this (Line 29 in Figure 7).

Generation of control structures. Unlike AST-based
generators, RGFUZzZ can generate control structures (e.g.,
block, loop, if) diversely and correctly by tracking stack
states. Figure 8 shows the algorithm for generating control
structures. First, RGFUZzz decides which kind of structure to
generate (Line 6) and pushes the current state to the labels
(Line 7). This label is used later as the target of branch
instructions (Lines 24-27). Largely, RGFUZZ generates five
kinds of structures: block, loop, if, br, and call. For
block, loop, and if, RGFUZZ generates a block structure
by recursively calling the block generation (Lines 10 — 13).
RGFUzz also generates the call structure with the function
call generation (Line 23). RGFUZz can generate br structure
if there is a proper label to branch (Lines 28 — 31). Whenever
RGFUZz generates these structures, it tracks the stack state
by popping n return types from the stack and pushing the
parameters of the generated structure back to the stack (Lines
8 and 34). Such parameters are decided based on the final
stack type of the generation. With this, RGFUZZ can generate
structures with diverse block types by dynamically deciding
their types without putting constraints on them.

Operand selection. GENERATOR produces random test

TABLE 1: List of runtimes and their versions. The table also lists
LLVM backend versions if the runtime uses LLVM.

Runtimes Version LLVM-backend
wasmtime v18.0.1 -
Wasmer v4.2.6 v15.0.7
WasmEdge v0.13.5 v16.0.6

V8 v12.6.21 -
SpiderMonkey c7df16ff -
JavaScriptCore cdfOe8ad -

cases based on the production rules to find bugs hidden
behind the complex compiler rules. This allows RGFuzz
to discover these bugs more effectively, usually located
near the rules. Similar to other standard fuzzers [33], [34],
GENERATOR generates instruction operands by choosing
new values or from pre-defined interesting value sets. The
interesting values contain values that are widely used in
compilers. For example, the interesting values for integers
contain 0, -1, 1, SINT_MIN, and UINT_MAX, and those for floats
contain 0.0, 1.0, -1.0, +inf, NaN.

Avoiding non-determinism. RGFUZzZ must avoid non-
determinism in the generated test cases to avoid false
positives in differential testing. WebAssembly can be non-
deterministic due to two reasons: 1) grow instructions such
as memory . grow can be non-deterministic, and 2) NaN floating
values can have either positive or negative signs. To avoid
this, RGFUzz does not generate grow instructions and
canonicalize NaN values. For NaN canonicalization, RGFUzz
follows the method used in Wasm-smith, which inserts a
sequence of instructions to canonicalize NaN values after
each instruction that may produce NaN values [35]. These
instructions check if the result of the target instruction is
NaN by comparing it with itself (i.e., using NaN != NaN) and
return a canonicalized value if it is NaN.

4.4. Differential testing

RGFUZz loads and runs the modules in different We-
bAssembly runtimes with varying compilers, optimizations,
and architectures. When RGFUZz loads the modules, it gen-
erates arguments based on the target function argument types,
runs the function multiple times with varying arguments,
and compares the results. RGFuUzz also randomizes CPU
options (e.g., SSE, AVX) before instantiating the module,
which allows RGFUZZ to explore lowering rules that require
specific CPU features. To compare divergence in memory,
RGFuzz also hashes the memory states after execution and
compares hashes between the runs.

5. Implementation

We implemented RGFUzZ with 13.5k lines of Rust
and Python. Specifically, we implemented EXTRACTOR
with 7.7k lines of Rust, GENERATOR with 3.9k lines of
Python, and TESTER with 1.9k lines of Python. To im-
plement EXTRACTOR, we utilized two components from
the Cranelift compiler: the ISLE compiler and the code

TABLE 2: List of baseline tools used in the evaluation.

Baseline Version Target
wasmtime-differential ~ v18.0.1 wasmtime
Fuzzgen v18.0.1 wasmtime
Wasm-mutate v18.0.1 wasmtime
Wasm-smith v1.206.0 Generic
Xsmith 792¢7695 Generic

translator. We reused the ISLE compiler to parse ISLE files
and the code translator to translate Cranelift IR modules
into WebAssembly modules. We also used wasm-ast [36]
to build WebAssembly modules. In GENERATOR, we used
wasmfun [37] to implement WebAssembly module building
and encoding, while modifying it to make it support SIMD
instructions.

Targets. Table 4 in Appendix lists supported targets,
architectures, and compiler optimization levels. Currently,
RGFuUZzz supports six engines: wasmtime [10], Wasmer [11],
WasmEdge [12], V8 [21], SpiderMonkey [22], and JavaScript-
Core [23]. For V8 and SpiderMonkey, RGFUZZ uses their
architecture simulators, allowing test cases to run with
minimal performance losses. For the other engines, RGFUzZz
uses the latest version of QEMU [38] (v8.2.94).

6. Evaluation

Environments. All experiments were done on servers
running Ubuntu 22.04 with two of Intel Xeon Gold 6248R 24-
core CPUs and 256GB of RAM. We allocated a single core
and 8GB of memory for each fuzzing instance, running them
for 24 hours, five times each. For statistical significance, we
used Mann-Whitney U tests as proposed by Klees et al. [39].
We performed experiments on six runtimes, listed in
Table 1: wasmtime [10], Wasmer [11], WasmEdge [12],
V8 [21], SpiderMonkey [22], and JavaScriptCore [23]. We
chose their versions as the latest when this paper was written.
As Wasmer and WasmEdge used LLVM as their backends,
we built LLVM with coverage support to measure the holistic
coverage of the runtimes.
Research Questions. In our evaluation, we conducted
experiments to answer the following research questions.

+ RQ1. How effective is RGFUZzZ in testing a Cranelift-
based runtime (i.e., wasmtime) compared to other
baselines? (Section 6.1)

« RQ2. How effective is RGFUZzz in testing other
runtimes? (Section 6.2)

« RQ3. Can RGFuzz generate test cases diversely?
(Section 6.3 and Section 6.4)

« RQ4. Can RGFuZzz find previously unknown bugs in
WebAssembly runtimes? (Section 6.5)

Additionally, we evaluate the validity of the heuristics used
in the instruction-level inference in Section A of Appendix.

6.1. Effectiveness in testing wasmtime

Coverage (%)

Optimization Line Coverage Optimization Rule Coverage

Lowering Line Coverage

Lowering Rule Coverage Total Line Coverage

100 100 100 100
—— RGFuzz —— Fuzzgen —— RGFuzz —— Fuzzgen —— RGFuzz —— Fuzzgen —— RGFuzz —— Fuzzgen 354 — RGFuzz —— Fuzzgen
RGFuzz- —— Wasm-mutate RGFuzz- —— Wasm-mutate RGFuzz- —— Wasm-mutate RGFuzz- —— Wasm-mutate RGFuzz- —— Wasm-mutate
80 { — Differential —— Xsmith 80 { — Differential —— Xsmith 80 | — Differential —— Xsmith 80 | — Differential —— Xsmith 30 { — Differential —— Xsmith
254
60 | 60 | 60 60
20+
401 401 40 40 15~£’_’f_/
10
20 { 20 201 20 7
5
0 —————r— 0 —————r— 0 ————— 0 —————— 0 —————

Figure 9: Line and rule coverage measured in wasmtime

(rule (simplify (bor ty @ $I64
(bor ty

(bor ty

(ishl ty x (iconst_u ty 56))

(ishl ty
(band ty x (iconst_u ty 0xff00))
(iconst_u ty 40)))

(bor ty

(ishl ty
(band ty x (iconst_u ty 0xff_0000))
(iconst_u ty 24))

(ishl ty
(band ty x (iconst_u ty 0xff00_0000))
(iconst_u ty 8))))

(bor ty
(bor ty
(band ty

(ushr ty x (iconst_u ty 8))
(iconst_u ty 0xff00_0000))
(band ty
(ushr ty x (iconst_u ty 24))
(iconst_u ty 0xff_0000)))
(bor ty
(band ty
(ushr ty x (iconst_u ty 40))
(iconst_u ty 0xff00))
(ushr ty x (iconst_u ty 56))))))
(bswap ty x))

(a) Example optimization rule requiring the complex IR structure.

(rule (lower (has_type $I64 (bswap src)))
(x64_bswap $I64 src))

(b) Example lowering rule requiring an IR from Figure 10a.

(rule 6 (lower (shuffle a b (ul28_from_immediate
0x1f0f_le®e_1d0®d_1cOc_1bOb_la®a_1909_1808)))
(x64_punpckhbw a b))

(c) Example lowering rule requiring specific immediates to trigger the rule.

Figure 10: Examples of rules that RGFuzz was able to cover.

Experimental Setup. To evaluate the effectiveness
of RGFUzz in testing wasmtime, a Cranelift-based
runtime, we compared it with the baseline tools:
wasmtime-differential [15], Fuzzgen [16], Wasm-mutate [14],
and Xsmith [20] in Table 2. We also considered Wasm-
smith [17] and WADIFF [18]. However, we excluded them be-
cause 1) wasmtime-differential internally uses Wasm-smith,
and 2) WADIFF’s source code was undergoing the tidying-up
process at the time of this writing. For the first three baseline
tools (wasmtime-differential, Fuzzgen, Wasm-mutate), we
used their default configurations by following instructions in

their documentation. For Xsmith, we integrated the tool to
RGFuzz along with its harness since it cannot run fuzzing
in a loop by itself. Moreover, to better show the effectiveness
of our rule-guided fuzzing, we also evaluated RGFUZZ", a
variant of RGFUZZ that only uses the WebAssembly typing
rules without production rules from Cranelift ISLE rules.
To compare each tool, we measured their coverage (i.e.,
total coverage) over 24 hours. For an in-depth comparison,
we also measured coverage for each compilation step: opti-
mization and lowering. We focused on the wasmtime files
responsible for optimization and lowering rules: isle_opt.rs
and isle_x64.rs. We measured their line coverage and rule
coverage. Line coverage, as usual, is the percentage of lines
covered by the generated test cases. Rule coverage is the
number of optimization and lowering rules the generated test
cases cover. This metric directly shows how well each tool
explores the compiler rules by the number of rules covered.

Results. Figure 9 shows the line and rule coverage that
RGFuUZzz and the baselines achieved in compiler optimization
and lowering code. In summary, RGFUZZ shows significantly
higher coverage than other baselines in all coverage metrics.
In optimization coverage, RGFUZz achieves 69.37% and
70.64% for line and rule coverage, respectively, achieving
23.05% and 19.67% more than the best baseline, Fuz-
zgen. Meanwhile, in lowering coverage, RGFUZzz achieves
71.43% and 75.11% for line and rule coverage, respectively,
achieving 6.01% and 6.38% more than the best baseline,
wasmtime-differential. Table 5 of Appendix shows the de-
tailed number of the results. Also, Section B of Appendix
shows the performance of EXTRACTOR.

Impact of rule-guided fuzzing. To understand why
RGFuUzz outperforms the other baselines, we performed
a detailed analysis of the cases where RGFUzz could cover
while the baselines could not. After our investigation, we
found that RGFuUZzZz could outperform the other baselines
because it could cover 1) rules with complex structures
and 2) rules requiring specific immediates that are hard
to generate without the knowledge of the compiler rules.
First, thanks to RGFUZzz’s rule extraction, it could cover
complex rules that require sophisticated constraints on the
IR structures. bswap is an example of such a rule, which
requires a complex IR structure with 35 IRs and specific
integer constants (see Figure 10a). As we can easily guess,
a naive fuzzer cannot cover such a rule without knowing the

structures. On the other hand, RGFUZz could cover the rule
by extracting the rules from the compiler. Second, RGFUZz
could cover rules even with specific immediates that are hard
to generate randomly. Figure 10c shows a such example,
which requires a specific ul28 immediate to trigger the
rule (i.e., 0x1f0f_le®e_1d0d_lcOc_1bOb_la®a_1909_1808).
As an ordinary fuzzer generates immediate based on random
values or a small set of interesting ones, it is impossible
to cover such rules if this constant is not in the dictionary.
However, since RGFUZzz analyzes the compiler rules and
extracts specific immediates from the rules, RGFuUzz was
able to cover such rules.

Ablation Study. To understand the impact of the rule-
based approach in RGFuUzz, we compared it with RGFuzz",
a variant without rule extraction. Our results show that
RGFuzz achieved over 20% higher coverage in optimization
and about 0.8% higher coverage in lowering compared
to RGFuzz", showing the effectiveness of our rule-based
approach. As previously discussed, RGFuzz could cover
complex rules that require knowledge of them to cover.

RGFuzz outperforms RGFUZZ™ more significantly in
optimization than in lowering because the optimization rules
in wasmtime tend to have more complex semantics than the
lowering rules. While optimization rules require complex
IR structures, lowering rules tend to have simpler structures,
mostly not requiring more than three IRs.

6.2. Effectiveness in testing other runtimes

Experimental Setup. To evaluate the effectiveness of
RGFUZz in testing other runtimes that are not based on
Cranelift, we ran RGFUZzZ on four runtimes: Wasmer,
WasmEdge, V8, and JavaScriptCore. We also tried to evaluate
on SpiderMonkey, but we failed to run it with coverage
measurement. We found that SpiderMonkey corrupts its
coverage data if it encounters undefined instructions (i.e., ud2)
generated from WebAssembly compilation, making us unable
to measure its coverage. In this evaluation, we used Wasm-
smith and Xsmith as the baseline tools because other baseline
tools in the previous evaluation (wasmtime-differential, Fuz-
zgen, Wasm-mutate) are unavailable for these runtimes, as
they were designed to target only wasmtime.

Results. Figure 11 shows the results of our evaluation in the
other runtimes that are not based on Cranelift. In summary,
RGFuzz and RGFUzz" achieved the highest coverage in
all the runtimes, showing the effectiveness of our approach
in testing versatile runtimes. Based on our investigation,
we believe that this happens because of two reasons: 1)
RGFuzz and RGFUZZ" can generate diverse test cases that
can explore compiler rules effectively (see Section 6.3 and
Section 6.4), and 2) RGFUZzz could cover the shared rules
between the runtimes and wasmtime using the extracted
rules. For example, we found that RGFUZz was the only
tool that covered the optimization rule in LLVM backends of
Wasmer and WasmEdge: —z X —y = z X y. Other baselines
failed to cover this rule because it is difficult to be generated
randomly. However, RGFUZZ could easily cover it with the

extracted rules because it is shared between LLVM backends
and wasmtime. Unfortunately, unlike the case of wasmtime,
the impact of our rule-based approach was not significant
because other runtimes tend to avoid implementing complex
rules to reduce compilation time. Despite this, we still
believe that RGFUZz could effectively test other runtimes if
equipped with more complex, shared rules with wasmtime.
Moreover, our approach is generic enough to be applied to
other runtimes with machine-readable compiler rules like
Cranelift ISLE. Like the previous evaluation, the detailed
results are included in Table 6 of Appendix.

6.3. Instruction-level diversity

Experimental Setup. In this experiment, we measured
the diversity of test cases generated by RGFUzz and other
baselines. We first sampled 100,000 test cases from each
tool and measured the distributions of 1) WebAssembly
instructions and 2) translated Cranelift IRs. In this evaluation,
we used the same baseline tools as the previous experiments:
Wasm-smith [17] and Xsmith [20].

To compare the diversity, we measured the cumulative
frequency with the IQR (Interquartile range) filtering [40].
IQR filtering is the standard method of filtering outliers. We
found that some instructions are generated excessively due to
the nature of the generation process. For example, local.get
instructions are always included in every test case for getting
function arguments, making the distribution highly biased.
Therefore, we used IQR filtering to remove them. We also
include the distribution of all instructions (i.e., no filtering)
for readers interested in the result involving outliers.

Results. As shown in Figure 12, RGFUzZ could generate
more diverse test cases than the other baselines as RGFUZZ’s
line is closer to the y = z line than the others. Notably, if a
tool generates instructions more diversely than others, the
graph will be closer to the y = « line. Theoretically, if
one tool generates all instructions with the same frequency,
the graph will reach the y = x line. This is because of
RGFuzz’s reverse-stack generation method. As discussed
in Section 4.3, RGFUZZ selects instructions reversely from
the returns. This makes RGFUZZ choose any instructions
regardless of their constraints. Unlike RGFUZZ, Wasm-smith
uses a stack-based generation method, which makes it hard to
generate instructions with multiple parameters. For example,
we found that Wasm-smith rarely generates v128.bitselect
instruction, which requires three v128 parameters. Because
it is unlikely to have three v128 parameters on the top of
the stack in a random generation, Wasm-smith could only
generate 28 times (frequency of 9.37 x 10~7) in 100,000 test
cases. This demonstrates that the Wasm-smith’s stack-based
generation has a limitation in generating diverse instructions,
while RGFUZZ’s reverse-stack generation can resolve that.

Even though Xsmith can freely select instructions like
RGFuUzz thanks to its reverse generation method, it has
implementation issues in selecting instructions. As a result,
Xsmith fails to generate as diverse instructions as RGFuzz.
More specifically, when Xsmith selects instructions, it first

Wasmer Wasmedge V8 Jsc
16 141 25 25
— RGFuzz —— Wasm-smith —— RGFuzz —— Wasm-smith — RGFuzz —— Wasm-smith — RGFuzz —— Wasm-smith
144 RGFuzz- —— Xsmith 12 4 RGFuzz- —— Xsmith RGFuzz- —— Xsmith RGFuzz- —— Xsmith
l _ _ _ — 204 204 —
_ 12 _ -
S ’ 10 {7
o 101
g 84 154 154
g s f/_J_f_,_,—f—f—
6
o
o 61 10 10
£
T 4] 4
54 5
24 21
O+ O+—T——T—T—T——T—T—T—T—T T 0O+—T—T—T——T——T—T——T—T—T T O+ T
XA 0 R R A 5 A A 5 A 30 & A 0 QS S AS 5 XA 0 R R A 0 L S AS 5 XA 0 R R A 5 A A 5
Q’va%NQ’\’/LNh’\b’\,%"(Q'ﬂ”LD‘ o WV vb%’\QN"/’\,&Nb’&’LQ’\?’LV SV b‘b%,\QN’L,\D‘,\,@,\%WD,L’L,& Q’LV@%NQ,\;LN ’\,b\?”\/Q'ﬂ”\,b‘

Figure 11: Total line coverage measured in other runtimes.

Instructions - IQR Instructions - All

IR Expressions - IQR IR Expressions - All

1.01 — RGFuzz 1.01 — RGFuzz 1.01 — RGFuzz 1.01 — RGFuzz
Wasm-smith Wasm-smith Wasm-smith Wasm-smith
> 0.8 —— Xsmith 0.84 —— Xsmith 0.84 —— Xsmith 0.84{ —— Xsmith
El
o
Q
i
o
2
=]
©
=]
£
S
(s}
T T T

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Instructions (1/|] each) Instructions (1/]1] each)

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
IR Expressions (1/|IR| each) IR Expressions (1/|IR| each)

Figure 12: Cumulative instruction and IR frequency (IQR, All).

RGFuzz

0.100 &
=
0.075 g
0.050 §
0.025 '+
0.000
0
5
10 & 0
& 5
& 10 1s
Retllrns

0
> 10 15

RE’tums 15 20 20

Wasm-smith

20 20

Xsmith
0.5
2 0.6 2
04 ¢ g
03 3 04 $
02 & o2 &
01 * *
%~ 2 0.0 0.0
0 0
5 5
10 @ 0 10 @
15 &° > 19 15 &°
< R 15 R
eturf)s 20 20

Figure 13: Block type distribution for tools.

chooses a category of instructions (e.g., binary operations,
comparisons, etc.). Then, it selects a specific instruction
(e.g., 132.mul from binary operations) from the category.
Unfortunately, Xsmith defines the probability of selecting a
category without considering the number of instructions in
each category. This causes Xsmith to select a category with
fewer instructions more frequently, making its generation
less diverse. For example, Xsmith generates i32.mul 21,390
times (frequency of 4.21 x 10~2) in 100,000 test cases, while
it generates i32.ne 2,670 times (5.26 x 10~%).

6.4. Structure-level diversity
Experimental Setup. In this experiment, we measured the

structure-level diversity from the distribution of block types
in the generated test cases. We acquired the block types of if,

loop, and block instructions, which are the most common
block types in WebAssembly modules. We categorized the
types of blocks with the numbers of parameter and return
types and measured their frequency in the test cases.
Results. Figure 13 shows the block type distributions of
the generated test cases by RGFUzz and the baselines. The
graph clearly shows that RGFUZz generates block types
more diversely than the others. Specifically, Wasm-smith and
Xsmith generate blocks with no parameters and 0 or 1 return
type over 90% of the time, while RGFUZZ generates blocks
with more diverse parameter and return types.

While RGFuUzz can generate block types diversely by
dynamically generating them, Wasm-smith cannot. Wasm-
smith tries to generate blocks with pre-generated block
types, and if it fails, it chooses block types between no
parameter type and O or 1 return type as they do not need

TABLE 3: Discovered bugs by RGFuzz.

Runtime Bug ID Architecture State Description

1 SpiderMonkey 1822754 ARM64 Fixed Wrong lowering of udiv with —2"

2 SpiderMonkey 1836710 MIPS64 Duplicate No support of unaligned memory accesses in architecture simulator
3 SpiderMonkey 1836708 MIPS64, MIPS32, Loong64 Fixed Register allocation bug of i64.mul

4 V8 40272422 MIPS64 Fixed Missing sign-extensions in architecture simulator

5 V8 42204055 RISC-V64 Reported ~ Program non-termination for i64.atomic.rmw.xxx

6 V8 42204056 RISC-V32 Fixed Bad memory reads with i64.atomic.rmw.cmpxchg

7 V8 42204054 RISC-V32 Fixed Possible memory leak for i64.atomic.rmw32.xxx_u
8 V8 42204057 RISC-V32 Fixed Missing implementation for i64.atomic.rmw.xchg

9 V8 40270498 MIPS64, RISC-V64, Loong64 Reported Missing sign-extensions in architecture simulator
10 V8 40915736 MIPS64, RISC-V64 Fixed Inconsistent sign extension for urem + extend

11 V8 40270499 RISC-V32 Reported ~ Wrong code generation for i64.1t_s

12 wasmtime 8114 RISC-V64 Fixed Wrong lowering for smin

13 wasmtime 8112 X64 Fixed select + load floating point wrong lowering

14 wasmtime 8132 S390X Fixed Wrong endianness for spilled function arguments
15 wasmtime 8145 X64, ARM64, S390X Fixed Missing NaN canonicalization for demote

16 wasmtime 8131 RISC-V64 Fixed Vector length bug in bitselect + bitcast + cmp

17 wasmtime 8179 X64, ARM64, S390X Fixed Missing NaN canonicalization for copysign + demote
18 wasmtime 8216 ARMG64, RISC-V64 Duplicate Incorrect memory side-effect for stores near bounds
19 Wasmer 4567 X64 Reported Inconsistent memory side-effect with traps

20 Wasmer 4568 X64 Reported Incorrect result for extmul instructions

21 ‘WasmEdge 3346 X64 Reported ~ Wrong optimization for invalid loads

22 WasmEdge 3347 X64 Reported Inconsistent memory side-effect with traps

to be pre-generated. This results in biases towards these two
block types, making the block type distribution less diverse.
Moreover, unlike RGFUZzZ being stack-aware, Xsmith cannot
generate block types with multiple return and parameter types.
This is the limitation of Xsmith’s AST-based generation:
such block types cannot be used since stack types cannot be
checked properly in the generation process.

6.5. Discovered bugs by RGFuUzZz

To evaluate whether RGFUZZ can find new bugs in
WebAssembly runtimes, we ran RGFUZz over 15 months.
We intermittently ran RGFUZZ on our targets to find bugs
while developing RGFUZzz. Our longest fuzzing campaign
lasted 24 hours, and all new bugs were discovered within that
time. As a result, RGFuUzz found 22 bugs in the runtimes,
with 20 of them previously unknown. We reported all bugs to
the vendors. 13 were confirmed and fixed, 2 were duplicates,
and 7 are still under investigation. Notably, one confirmed
bug in SpiderMonkey was assigned a CVE ID of CVE-2023-
29548. While running RGFuUzz, we also found a bug in the
TCG accelerator of QEMU [38] and another in WasmEdge
Rust SDK. These bugs were also reported to the vendors
and are confirmed and fixed.

Most of the bugs that RGFuUzz found were seman-
tic bugs, leading to incorrect behaviors in the compiled
WebAssembly programs. These bugs could be exploited
by attackers to induce unexpected behaviors of security-
critical WebAssembly programs. For example, we found
that wasmtime maintainers consider mis-compilation bugs
as security bugs [41]. In the next section (Section 7), we
will provide case studies of the bugs found by RGFuzz.

We can estimate the effectiveness of RGFUZzZ in finding
bugs by considering how well our targets have been tested or
fuzzed before. For example, wasmtime, in which we found

6 new bugs (excluding 1 duplicate), has been continuously
fuzzed with oss-fuzz [42] starting from January 2020', before
its near-initial release (v0.12.0). Since oss-fuzz includes all
the fuzzers we compared against, we believe RGFUZz is
capable of finding bugs that current fuzzers cannot. We
also note that while the wasmtime developers are actively
improving their fuzzers, the bugs remained undiscovered until
RGFuUzz identified them, demonstrating the effectiveness of
RGFuzz.

7. Case Studies

This section presents case studies of the bugs found
by RGFUZz in WebAssembly runtimes, discussing how
RGFuzz found the bugs while others could not. Here, we
present two cases: wasmtime ID 8114 and 8112. Additional
case studies are presented in Section C of Appendix.

wasmtime ID 8114. RGFuzz found a bug in wasmtime
RISC-V64 that incorrectly lowers smin IR into a max instruc-
tion. Figure 14 shows the proof of concept code of the bug.
Because of wasmtime’s optimization rule, the WebAssembly
instructions in Figure 14 will be converted into a smin IR.
But, in lowering, the old wasmtime incorrectly lowers this
into a max instruction, causing a semantic difference from
the original WebAssembly instructions.

RGFuUzz could find this bug as it learns the optimization
rule of smin from the compiler. We believe this bug would
be hard to be found by other fuzzers since it requires six
instructions with specific arguments to trigger the rule.

wasmtime ID 8112. RGFuzz found a bug in wasmtime
X64 that incorrectly lowers select instruction combined
with the load of a floating point value. The bug results in

1. https://bugs.chromium.org/p/oss-fuzz/issues/list?q=wasmtime&can=1&
sort=-reported

® 9 U R WD —

9 U R W —

local.get
local.get
local.get
local.get
i64.gt_s
select

;; Expected: min(arg®, argl)
;; Actual : max(arg®, argl)

(==

Figure 14: Proof of concept code of wasmtime Issue 8114.

a trap with an out-of-bounds memory access even though
the memory access is in bounds. Figure 15 shows the proof
of concept code of the bug. The code returns a £64 value
loaded from the memory address arg2 if arg® is non-zero.
The problem occurs when wasmtime internally handles the
select as a conditional move but with a load into an xmm
register, which accesses 16 bytes of memory instead of 8
bytes for £64. Therefore, when the offset is 8 bytes from the
memory max offset (0x10000 - 8), the code results in a trap
due to out-of-bounds memory access (0x10000 - 8 + 16).
RGFuUzz could find this bug since it can generate
instructions diversely even though the instructions require
complex constraints. In particular, select is rarely generated
by other fuzzers, as it requires 1) the first argument to be an
i32 type and 2) the second and third arguments to be the same
type. RGFUZZ can satisfy this constraint easily due to reverse
stack-based generation. However, even though wasmtime has
been continuously fuzzed with wasmtime-differential, this
bug was undetected since it rarely generated select instruc-
tions due to its lack of diversity in instruction generation.

local.get 2 ;; arg2: Oxfff8

£64.1load

f64.const O

local.get O ;; arg0®: 1

select

;; Expected: mem[arg2] or 0.0 based on arg®
;; Actual : Trap

Figure 15: Proof of concept code of wasmtime Issue 8112.

8. Discussion and Limitation

Limitations. Our current implementation of RGFuzz
focuses on the official WebAssembly specification [31] and
the threads proposal [43]. This is because we would like
to focus on the official specification where all runtimes
commonly support. However, some runtimes (e.g., wasmtime)
decided to implement other proposals like relaxed-simd and
multi-memory, which RGFUZz does not support. We leave
supporting other proposals as future work.

Currently, RGFUZzz supports black-box fuzzing with gen-
eration, not coverage-guided fuzzing. To implement coverage-
guided fuzzing, we need substantial effort to implement
feedback mechanisms for the runtimes RGFUZz currently
supports. Thus, we leave this as a future work.

Additionally, rule-guided fuzzing, one technique of
RGFuzz, showed its limited effectiveness in testing other
runtimes (Section 6.2). However, the results of RGFuUzz

finding 15 bugs in additional runtimes still show that
RGFuzz is effective not only for wasmtime but also for
other runtimes. This is due to RGFUZZ using not only rule-
guided fuzzing but also reverse stack-based generation, which
showed its effectiveness in Section 6.2. As a result, RGFuUzz
outperformed existing fuzzers like Xsmith and Wasm-smith
across all other runtimes as shown in Figure 11.

Finally, we emphasize the significance of effectively
testing Cranelift. Cranelift is not exclusive to wasmtime
and is increasingly being adopted in other applications. For
example, a widely-used WebAssembly runtime, Wasmer,
also supports Cranelift as its compiler backend. Moreover,
Cranelift is now being used in a code generator for the
Rust compiler [44]. We believe that Cranelift will widen its
application in the future.

Compiler rules in a domain-specific language. We believe
that maintaining compiler rules separately in a definitive
domain-specific language like in wasmtime promotes the
development of compiler testers, effectively finding bugs in
compilers. With these, the overall reliability and robustness
of compilers can be significantly improved. The testers can
benefit from this approach by extracting and understanding
the semantics of compiler rules.

Several works, including ours, took advantage of the
approach to test compilers. RGFUZZ was able to extract
the semantics of compiler rules from the Cranelift compiler,
largely because these rules are written in a definitive and
machine-friendly language, ISLE. Similarly, Crocus [45] uses
an annotation language based on ISLE to verify ARM64
instruction lowering rules. The work would not be possible
without the definitive nature of ISLE.

Manual effort to manage directive handlers. Our directive
handlers consist of 2,143 lines of Rust code, managing
274 directives, created over two weeks by someone with
limited knowledge of the runtime internals. Although writing
directives requires a considerable amount of effort, we want
to emphasize that this is a one-time effort.

Handlers may need to be implemented as new direc-
tives are added to wasmtime with each major version
update introducing around 10 new directives roughly every
month. Writing handlers for these new directives takes
about 3 hours by reusing existing code, thanks to the
similarity among directives. For example, new directives
focused on floating-point arithmetics for immediates (e.g.,
£32_add/sub/mul/div imml imm2), do not require much ef-
fort despite their number due to their consistent pattern.
Additionally, even if certain directives are not supported,
RGFuUZzz can still handle all other rules that do not use
those specific directives. Therefore, in summary, we believe
this level of effort is manageable.

9. Related Work

WebAssembly runtime fuzzing. There have been several
studies on fuzzing WebAssembly runtimes [32], [46], [47],
[48], [49], [50]. First, WebAssembly runtimes V8 [21]
and wasmtime [10] have their own fuzzers [13], [14],

[15], [16] to identify bugs in their implementations. Be-
sides these, Wasm-smith [17] uses stack-based program
generation to produce valid WebAssembly modules. In
particular, it emulates the runtime stack to ensure the
stack conditions of stack-polymorphic instructions (e.g.,
loop). wasmtime-differential [15] employs Wasm-smith and
performs differential fuzzing to detect semantics bugs in
wasmtime. Fuzzgen [16] is another differential fuzzer in
wasmtime but performs IR-based fuzzing. However, due to
the nature of IR-based fuzzing, it cannot be used to test
other runtimes. WADIFF [18] employs symbolic execution
on differential fuzzing, but it can only detect bugs that
happen in a single instruction, not the ones that occur
with multiple instructions like in optimizations. Perényi et
al. [19] uses the stack-directed generator, a backtracking
stack-based generator. Similarly to RGFUzz, it generates
instructions reversely from the return types while emulating
the runtime stack. However, it does not use the stack to
handle stack-polymorphism. Instead, it severely limits the
polymorphism, generating control structures with only one
return and no parameter. Xsmith [20] performs differential
fuzzing on runtimes with multiple languages with grammar-
based test case generators. Unlike these works, RGFUZz
uses rule-guided fuzzing and reverse stack-based generation
to effectively find bugs in versatile WebAssembly runtimes.

Compiler Fuzzing. There have been several studies on
fuzzing compilers. Csmith [51] is a notable compiler fuzzer
that performs differential testing for C compilers, randomly
generating test cases while avoiding undefined and un-
specified C behaviors. Several works were inspired by
Csmith, extending its approach to WebAssembly [17], [20],
concurrency [52], OpenCL [53], and Rust [54]. Le et al.
proposed Equivalence Modulo Inputs (EMI), generating
mutant programs with the same semantics for differential
fuzzing. There have been works [53], [55], [56], [57] that
succeeded in finding bugs in compilers using EMI. Learning-
based approaches [58], [59], [60], [61] that use language
models have also been used to generate test cases. More
recent works adopt large language models (e.g., GPT [62],
[63]) for compiler testing [64], [65].

Differential Testing. Differential testing compares the
outputs of two or more implementations of the same specifi-
cation to find bugs. After McKeeman et al. [66] first proposed
the concept of differential testing, it is now widely used to
test various applications: browsers [67], [68], [69], [70], [71],
[72], compilers [51], [73], [74], virtual machines [75], [76],
blockchain [77], [78], and hardware [79]. Similar to these
works, RGFUzz adopts the idea of differential testing to
find semantic bugs in WebAssembly runtimes.

WebAssembly verification. There have been several studies
on verifying WebAssembly runtimes. Crocus [45] verified
ARMG64 instruction lowering rules in the Cranelift compiler
and found two previously unknown bugs. VeriWasm [80]
verifies x86_64 binaries and checks if they violate We-
bAssembly’s isolation guarantees. VeriWasm does not verify
compilers, but it verifies binaries and inserts safety mecha-
nisms into them. WaVe [81] implements a runtime with

verified interactions with the host system. Bosamiya et
al. [48] proposes VWASM, a verified sandboxing compiler
using formal methods. It also proposes rWASM, which
provides safety using safe Rust code. WasmRef-Isabelle [82]
implements a monadic interpreter verified with Isabelle/HOL.
While these verification works are important for ensuring
the correctness of WebAssembly runtimes, fuzzing is still
needed as it can be applied to diverse runtimes and can find
bugs not covered by the verification.

10. Conclusion

In this paper, we presented RGFUZz, a differential fuzzer
for WebAssembly runtimes with two novel techniques: rule-
guided fuzzing and reverse stack-based generation. First,
RGFuzz uses rule-guided fuzzing, which extracts compiler
rules from the WebAssembly runtime and uses them to guide
test case generation, effectively exploring complex rules.
Second, RGFuUzz uses reverse stack-based generation to
generate test cases diversely. We implemented the prototype
of RGFuUzz and evaluated it on six engines: wasmtime,
Wasmer, WasmEdge, V8, SpiderMonkey, and JavaScriptCore.
As a result, RGFuUzz found 20 new bugs in these engines,
including one bug with a CVE ID issued.

Acknowledgments

We thank the anonymous reviewers and shepherd for pro-
viding valuable feedback. The authors from KAIST were sup-
ported by the National Research Foundation of Korea(NRF)
grant funded by the Korea government(MSIT) (No. NRF-
2022K1A3A1A91094267) and BK21 FOUR(Connected Al
Education & Research Program for Industry and Society
Innovation, KAIST EE, No. 4120200113769). The author
from Hanyang University was supported by the National
Research Foundation of Korea(NRF) grant funded by the Ko-
rea government(MSIT) (No. NRF-2021R1A5A1021944), the
research fund of Hanyang University(HY-202000000002755),
and Samsung Electronics.

References

[1] “Webassembly - roadmap,” https://webassembly.org/features/, accessed:
2024-09-20.

[2] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the
web up to speed with webassembly,” in Proceedings of the 2017
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Barcelona, Spain, Jun. 2017.

[3] Block.one, “Eoiso blockchain software & services,” https://eos.io/,
accessed: 2024-09-20.

[4] ewasm, “Ethereum flavored webassembly (ewasm),” https://github.
com/ewasm/design, accessed: 2024-09-20.

[5]1 Cloudflare, “Webassembly on cloudflare workers,” https://blog.
cloudflare.com/webassembly-on-cloudflare-workers/, accessed: 2024-
09-20.

[6] Fastly, “Compute | fastly products,” https://www.fastly.com/products/
compute, accessed: 2024-09-20.

https://webassembly.org/features/
https://eos.io/
https://github.com/ewasm/design
https://github.com/ewasm/design
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://www.fastly.com/products/compute
https://www.fastly.com/products/compute

(71
(8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

(25]

[26]

Krustlet, “Krustlet,” https://krustlet.dev, accessed: 2024-09-20.

wasmCloud, “wasmcloud,” https://wasmcloud.com, accessed: 2024-
09-20.

>

S. O’Dwyer, “Photon: A webassembly image processing library,
https://silvia-odwyer.github.io/photon/, accessed: 2024-09-20.

”»

B. Alliance, “wasmtime: A standalone runtime for webassembly,
https://wasmtime.dev, accessed: 2024-09-20.

Wasmer, “Wasmer,” https://wasmer.io, 2024, accessed: 2024-09-20.

WasmEdge, “Wasmedge,” https://wasmedge.org, 2024, accessed: 2024-
09-20.

Google, “v8/v8/test/fuzzer/wasm-compile.cc,” https://chromium.
googlesource.com/v8/v8/+/refs/heads/main/test/fuzzer/wasm-compile.
cc, accessed: 2024-09-20.

J. C. Arteaga, N. Fitzgerald, M. Monperrus, and B. Baudry, “Wasm-
mutate: Fuzzing webassembly compilers with e-graphs,” in E-Graph
Research, Applications, Practices, and Human-factors Symposium,
2022.

B. Alliance, “fuzz/fuzz_targets/differential.rs,” https://github.com/
bytecodealliance/wasmtime/blob/main/fuzz/fuzz_targets/differential.
rs, accessed: 2024-09-20.

X “fuzz/fuzz_targets/cranelift-fuzzgen.rs,” https://github.
com/bytecodealliance/wasmtime/blob/main/fuzz/fuzz_targets/
cranelift-fuzzgen.rs, accessed: 2024-09-20.

——, “wasm-smith: A webassembly test case generator.” https://github.
com/bytecodealliance/wasm-tools/tree/main/crates/wasm-smith, ac-
cessed: 2024-09-20.

S. Zhou, M. Jiang, W. Chen, H. Zhou, H. Wang, and X. Luo,
“Wadiff: A differential testing framework for webassembly runtimes,”
in Proceedings of the 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE), Kirchberg, Luxembourg, Sep.
2023.

A. Perényi and J. Midtgaard, “Stack-driven program generation of
webassembly,” in Programming Languages and Systems: 18th Asian
Symposium, APLAS 2020, Fukuoka, Japan, November 30—December
2, 2020, Proceedings 18. Springer, 2020, pp. 209-230.

W. Hatch, P. Darragh, S. Porncharoenwase, G. Watson, and E. Eide,
“Generating conforming programs with xsmith,” in Proceedings of the
Proceedings of the 22nd ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences (GPCE), Lisbon,
Portugal, Oct. 2023.

Google, “V8 javascript engine,” https://chromium.googlesource.com/
v8/v8.git/, accessed: 2024-09-20.

Mozilla, “Spidermonkey javascript/webassembly engine,” https://
spidermonkey.dev, accessed: 2024-09-20.

A. Inc., “Javascriptcore - webkit documentation,” https://docs.webkit.
org/Deep%20Dive/JSC/JavaScriptCore.html, accessed: 2024-09-20.

S. Narayan, T. Garfinkel, M. Taram, J. Rudek, D. Moghimi, E. Johnson,
C. Fallin, A. Vahldiek-Oberwagner, M. LeMay, R. Sahita et al.,
“Going beyond the limits of sfi: Flexible and secure hardware-assisted
in-process isolation with hfi,” in Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Vancover, Canada, Mar.
2023.

S. Narayan, C. Disselkoen, D. Moghimi, S. Cauligi, E. Johnson,
Z. Gang, A. Vahldiek-Oberwagner, R. Sahita, H. Shacham, D. Tullsen
et al., “Swivel: Hardening webassembly against spectre,” in Proceed-
ings of the 30th USENIX Security Symposium (Security), Virtual, Aug.
2021.

P. Srivastava and M. Payer, “Gramatron: Effective grammar-aware
fuzzing,” in Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA), Virtual, Jul. 2021.

[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox
fuzzing,” in Proceedings of the 2008 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), Tucson,
Arizona, Jun. 2008.

J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-driven seed
generation for fuzzing,” in Proceedings of the 38th IEEE Symposium
on Security and Privacy (Oakland), San Jose, CA, May 2017.

B. Alliance, “ISLE: Instruction Selection/Lowering Expressions DSL,”
https://github.com/bytecodealliance/wasmtime/tree/main/cranelift/
isle, accessed: 2024-09-20.

M. Bezem, J. W. Klop, and R. de Vrijer, Term rewriting systems.
Cambridge University Press, 2003.

“WebAssembly Core Specification,” https://webassembly.github.io/
spec/core/_download/WebAssembly.pdf. [Online]. Available: https:
/Iwww.w3.org/TR/wasm-core-2/

G. Hamidy, “Differential fuzzing the webassembly,” 2020.

M. Zalewski, “american fuzzy lop (2.52b),” https://Ilcamtuf.coredump.
cx/afl/, accessed: 2024-09-20.

>

L. Project, “libfuzzer — a library for coverage-guided fuzz testing.’
https://Ilvm.org/docs/LibFuzzer.html, accessed: 2024-09-20.

B. Alliance, “crates/wasm-smith/src/core/code_builder.rs,”
https://github.com/bytecodealliance/wasm-tools/blob/
2728f93ab66edda25a865bc54b81f66f98ca344a/crates/wasm-smith/
src/core/code_builder.rs#1.1340, accessed: 2024-09-20.

M. D. Salcedo, “A rust-native webassembly syntax model useful for
generating, parsing, and emitting webassembly code.” https://github.
com/misalcedo/wasm-ast, accessed: 2024-09-20.

>

A. Klein, “Getting the hang of wasm - generate wasm from python,
https://github.com/almarklein/wasmfun, accessed: 2024-09-20.

F. Bellard, “Qemu, a fast and portable dynamic translator.” in Pro-
ceedings of the 2005 USENIX Annual Technical Conference (ATC),
Anaheim, CA, Jun. 2005.

G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating fuzz
testing,” in Proceedings of the 25th ACM Conference on Computer and
Communications Security (CCS), Toronto, ON, Canada, Oct. 2018.

J. W. Tukey et al., Exploratory data analysis. Springer, 1977, vol. 2.

A. Crichton, “Miscompilation of wasm ‘i64x2.shr_s‘ instruction
with constant input on x86_64,” https://github.com/bytecodealliance/
wasmtime/security/advisories/ GHSA-gw5p-q8mj-p7gh, accessed:
2024-09-20.

K. Serebryany, “OSS-Fuzz-google’s continuous fuzzing service for
open source software,” 2017.

WebAssembly, “Threads and atomics in webassembly,” https://github.
com/WebAssembly/threads, accessed: 2024-09-20.

T. R. P. Language, “Cranelift codegen backend for rust,” https://github.
com/rust-lang/rustc_codegen_cranelift, accessed: 2024-09-20.

A. VanHattum, M. Pardeshi, C. Fallin, A. Sampson, and F. Brown,
“Lightweight, modular verification for webassembly-to-native instruc-
tion selection,” in Proceedings of the 29th ACM International Con-
ference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), San Diego, CA, Apr. 2024.

B. Jiang, Z. Li, Y. Huang, Z. Zhang, and W. Chan, “Wasmfuzzer:
A fuzzer for webassembly virtual machines,” in 34th International
Conference on Software Engineering and Knowledge Engineering,
SEKE 2022. KSI Research Inc., 2022, pp. 537-542.

K. HaBler and D. Maier, “Wafl: Binary-only webassembly fuzzing with
fast snapshots,” in Reversing and Offensive-oriented Trends Symposium,
2021, pp. 23-30.

J. Bosamiya, W. S. Lim, and B. Parno, “Provably-Safe multilingual
software sandboxing using WebAssembly,” in Proceedings of the 31st
USENIX Security Symposium (Security), Boston, MA, Aug. 2022.

https://krustlet.dev
https://wasmcloud.com
https://silvia-odwyer.github.io/photon/
https://wasmtime.dev
https://wasmer.io
https://wasmedge.org
https://chromium.googlesource.com/v8/v8/+/refs/heads/main/test/fuzzer/wasm-compile.cc
https://chromium.googlesource.com/v8/v8/+/refs/heads/main/test/fuzzer/wasm-compile.cc
https://chromium.googlesource.com/v8/v8/+/refs/heads/main/test/fuzzer/wasm-compile.cc
https://github.com/bytecodealliance/wasmtime/blob/main/fuzz/fuzz_targets/differential.rs
https://github.com/bytecodealliance/wasmtime/blob/main/fuzz/fuzz_targets/differential.rs
https://github.com/bytecodealliance/wasmtime/blob/main/fuzz/fuzz_targets/differential.rs
https://github.com/bytecodealliance/wasmtime/blob/main/fuzz/fuzz_targets/cranelift-fuzzgen.rs
https://github.com/bytecodealliance/wasmtime/blob/main/fuzz/fuzz_targets/cranelift-fuzzgen.rs
https://github.com/bytecodealliance/wasmtime/blob/main/fuzz/fuzz_targets/cranelift-fuzzgen.rs
https://github.com/bytecodealliance/wasm-tools/tree/main/crates/wasm-smith
https://github.com/bytecodealliance/wasm-tools/tree/main/crates/wasm-smith
https://chromium.googlesource.com/v8/v8.git/
https://chromium.googlesource.com/v8/v8.git/
https://spidermonkey.dev
https://spidermonkey.dev
https://docs.webkit.org/Deep%20Dive/JSC/JavaScriptCore.html
https://docs.webkit.org/Deep%20Dive/JSC/JavaScriptCore.html
https://github.com/bytecodealliance/wasmtime/tree/main/cranelift/isle
https://github.com/bytecodealliance/wasmtime/tree/main/cranelift/isle
https://webassembly.github.io/spec/core/_download/WebAssembly.pdf
https://webassembly.github.io/spec/core/_download/WebAssembly.pdf
https://www.w3.org/TR/wasm-core-2/
https://www.w3.org/TR/wasm-core-2/
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://llvm.org/docs/LibFuzzer.html
https://github.com/bytecodealliance/wasm-tools/blob/2728f93ab66edda25a865bc54b81f66f98ca344a/crates/wasm-smith/src/core/code_builder.rs#L1340
https://github.com/bytecodealliance/wasm-tools/blob/2728f93ab66edda25a865bc54b81f66f98ca344a/crates/wasm-smith/src/core/code_builder.rs#L1340
https://github.com/bytecodealliance/wasm-tools/blob/2728f93ab66edda25a865bc54b81f66f98ca344a/crates/wasm-smith/src/core/code_builder.rs#L1340
https://github.com/misalcedo/wasm-ast
https://github.com/misalcedo/wasm-ast
https://github.com/almarklein/wasmfun
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-gw5p-q8mj-p7gh
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-gw5p-q8mj-p7gh
https://github.com/WebAssembly/threads
https://github.com/WebAssembly/threads
https://github.com/rust-lang/rustc_codegen_cranelift
https://github.com/rust-lang/rustc_codegen_cranelift

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

(591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

F. Labs, “WARF - WebAssembly Runtimes Fuzzing project,” https:
//github.com/FuzzingLabs/wasm_runtimes_fuzzing, accessed: 2024-
09-20.

C. Wen, “Wasmfuzz: Fuzz testing on javascriptcore and webassembly
in webkit,” https://github.com/wcventure/WasmFuzz, 2019, accessed:
2024-09-20.

X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in ¢ compilers,” in Proceedings of the 2011 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), San Jose, CA, Jun. 2011.

R. Morisset, P. Pawan, and F. Zappa Nardelli, “Compiler testing via
a theory of sound optimisations in the c11/c++ 11 memory model,”
ACM SIGPLAN Notices, vol. 48, no. 6, pp. 187-196, 2013.

C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson, “Many-core
compiler fuzzing,” ACM SIGPLAN Notices, vol. 50, no. 6, pp. 65-76,
2015.

M. Sharma, P. Yu, and A. F. Donaldson, “Rustsmith: Random differ-
ential compiler testing for rust,” in Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA), Seattle, WA,
Jul. 2023.

V. Le, C. Sun, and Z. Su, “Finding deep compiler bugs via guided
stochastic program mutation,” ACM SIGPLAN Notices, vol. 50, no. 10,
pp- 386-399, 2015.

C. Sun, V. Le, and Z. Su, “Finding compiler bugs via live code
mutation,” in Proceedings of the 27th Annual ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), Amsterdam, Netherlands, Oct.—Nov. 2016.

A. F. Donaldson, H. Evrard, A. Lascu, and P. Thomson, “Automated
testing of graphics shader compilers. pacmpl, 1, oopsla (2017), 93:
1-93: 29, 2017.

C. Cummins, P. Petoumenos, A. Murray, and H. Leather, “Compiler
fuzzing through deep learning,” in Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA), Amsterdam,
Netherlands, Jul. 2018.

S. Lee, H. Han, S. K. Cha, and S. Son, “Montage: A neural network
language Model-GuidedJavaScript engine fuzzer,” in Proceedings of
the 29th USENIX Security Symposium (Security), Boston, MA, Aug.
2020.

H. Xu, Y. Wang, S. Fan, P. Xie, and A. Liu, “Dsmith: Compiler
fuzzing through generative deep learning model with attention,” in
2020 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2020, pp. 1-9.

X. Liu, X. Li, R. Prajapati, and D. Wu, “Deepfuzz: Automatic
generation of syntax valid ¢ programs for fuzz testing,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01,
2019, pp. 1044-1051.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell ef al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877-1901, 2020.

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

C. S. Xia, M. Paltenghi, J. Le Tian, M. Pradel, and L. Zhang, “Fuzz4all:
Universal fuzzing with large language models,” in Proceedings of
the 46th International Conference on Software Engineering (ICSE),
Lisbon, Portugal, Apr. 2024.

Q. Gu, “Llm-based code generation method for golang compiler
testing,” in Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, 2023, pp. 2201-2203.

W. M. McKeeman, “Differential testing for software,” Digital Technical
Journal, vol. 10, no. 1, pp. 100-107, 1998.

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

(77

[78]

[79]

[80]

[81]

[82]

L. Bernhard, T. Scharnowski, M. Schloegel, T. Blazytko, and T. Holz,
“Jit-picking: Differential fuzzing of javascript engines,” in Proceedings
of the 29th ACM Conference on Computer and Communications
Security (CCS), Los Angeles, CA, Nov. 2022.

J. Wang, Z. Zhang, S. Liu, X. Du, and J. Chen, “FuzzJIT: Oracle-
Enhanced fuzzing for JavaScript engine JIT compiler,” in Proceedings
of the 32nd USENIX Security Symposium (Security), Anaheim, CA,
Aug. 2023.

S. Song, J. Hur, S. Kim, P. Rogers, and B. Lee, “R2z2: Detecting
rendering regressions in web browsers through differential fuzz testing,”
in Proceedings of the 44th International Conference on Software
Engineering (ICSE), Pittsburgh, USA, May 2022.

J. Park, S. An, D. Youn, G. Kim, and S. Ryu, “Jest: N+ 1l-version
differential testing of both javascript engines and specification,”
in Proceedings of the 43rd International Conference on Software
Engineering (ICSE), Madrid, Spain, May 2021.

G. Ye, Z. Tang, S. H. Tan, S. Huang, D. Fang, X. Sun, L. Bian,
H. Wang, and Z. Wang, “Automated conformance testing for javascript
engines via deep compiler fuzzing,” in Proceedings of the 2021
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Virtual, Jun. 2021.

S. Wi, T. T. Nguyen, J. Kim, B. Stock, and S. Son, “Diffcsp:
Finding browser bugs in content security policy enforcement through
differential testing,” in Proceedings of the 2023 Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA,
Feb.—Mar. 2023.

V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” ACM Sigplan Notices, vol. 49, no. 6, pp. 216-226,
2014.

J. Liu, J. Lin, F. Ruffy, C. Tan, J. Li, A. Panda, and L. Zhang,
“Nnsmith: Generating diverse and valid test cases for deep learning
compilers,” in Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Vancover, Canada, Mar. 2023.

M. Wu, M. Lu, H. Cui, J. Chen, Y. Zhang, and L. Zhang, “Jitfuzz:
Coverage-guided fuzzing for jvm just-in-time compilers,” in Proceed-
ings of the 45th International Conference on Software Engineering
(ICSE), Melbourne, Australia, May 2023.

D. Maier, F. FiBler, and J.-P. Seifert, “Uncovering smart contract vim
bugs via differential fuzzing,” in Reversing and Offensive-oriented
Trends Symposium, 2021, pp. 11-22.

S. Kim and S. Hwang, “Etherdiffer: Differential testing on rpc services
of ethereum nodes,” in Proceedings of the 18th European Software
Engineering Conference (ESEC) / 31st ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE), California, USA,
Dec. 2023.

Y. Yang, T. Kim, and B.-G. Chun, “Finding consensus bugs in ethereum
via multi-transaction differential fuzzing,” in Proceedings of the 15th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Carlsbad, CA, Jul. 2018.

J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee, “Difuzzrtl:
Differential fuzz testing to find cpu bugs,” in Proceedings of the 42nd
IEEE Symposium on Security and Privacy (Oakland), San Francisco,
CA, May 2021.

E. Johnson, D. Thien, Y. Alhessi, S. Narayan, F. Brown, S. Lerner,
T. McMullen, S. Savage, and D. Stefan, “Trust but verify: Sfi safety for
native-compiled wasm,” in Proceedings of the 2021 Annual Network
and Distributed System Security Symposium (NDSS), Virtual, Feb.
2021.

E. Johnson, E. Laufer, Z. Zhao, D. Gohman, S. Narayan, S. Savage,
D. Stefan, and F. Brown, “Wave: a verifiably secure webassembly
sandboxing runtime,” in Proceedings of the 44th IEEE Symposium on
Security and Privacy (Oakland), San Francisco, CA, May 2023.

C. Watt, M. Trela, P. Lammich, and F. Mirkl, “Wasmref-isabelle:
A verified monadic interpreter and industrial fuzzing oracle for
webassembly,” in Proceedings of the 2023 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI),
Orlando, FL, Jun. 2023.

https://github.com/FuzzingLabs/wasm_runtimes_fuzzing
https://github.com/FuzzingLabs/wasm_runtimes_fuzzing
https://github.com/wcventure/WasmFuzz

Appendix A.
Validity of instruction-level inference heuristics

We manually checked the IR mappings for 363 We-
bAssembly instructions supported by EXTRACTOR and found
three types of generated mappings. First, there were 1-1
mappings (93.91%), were all correct when we manually
checked them. Second, there were 1-N mappings, which we
found both valid (4.43%) and invalid (1.66%) cases. Among
them, the valid cases were feasible as IRs may be mapped
to multiple instructions; for instance, when there is no IR
support for signedness, an IR may be mapped to both signed
and unsigned instructions. Finally, there was one case of no
mapping: the drop instruction, which cannot be mapped to
any IR since it does not emit any IR.

Appendix B.
Performance of rule extraction

In this evaluation, we evaluate the performance of
RGFuUzZ’s rule extraction process (i.e., how many rules
can be extracted from how many rules in the ISLE). In
summary, RGFUzz’s EXTRACTOR successfully extracts
27,610 production rules from 70.97% (264 out of 372)
optimization rules and 40.77% (786 out of 1,928) lowering
rules. EXTRACTOR outputs more production rules than the
number of ISLE rules due to concretization and substitution.
In particular, RGFUZZ concretizes generic types in ISLE
rules to the concrete types of WebAssembly instructions. For
example, in the case of Figure 3b, this rule can be mapped
into i32.or, i64.or, or v128.or. Moreover, EXTRACTOR
can substitute multiple rules in its recursive substitution. For
example, ineg, which negates the operand, can be matched
with rules such as 0 — z, (!z) + 1, !(z — 1), and (—1) x z.
When this kind of IR is used in other rules, RGFuUZZ can
build multiple rules by substituting these diverse rules for
thorough exploration.

RGFuUzz could extract rules from all the ISLE rules
except for the ones that contain: 1) unused IRs (e.g., umulhi),
2) IRs that can be translated only from the instructions
we have not implemented (e.g., relaxed-simd WebAssembly
feature), and 3) directives that are unsupported by RGFuzz.
We believe we can improve the coverage of the extracted
rules by implementing more WebAssembly instructions and
features, but we leave them as future work.

RGFuzz takes 2-10 minutes to run, depending on pro-
cessor performance. On our evaluation machine (Section 6),
rule extraction had an average runtime of 151.03 seconds
and a maximum memory usage of 1.29 gigabytes. These
results are based on 5 runs, with standard deviations of 1.28
seconds and 310.81 kilobytes in memory usage.

Appendix C.
Additional Case Studies

SpiderMonkey ID 1822754 (CVE-2023-29548). Spider-
Monkey ARM64 Ion compiler incorrectly lowers unsigned

(SN RO S

o w A W

division with a divisor constant —2". Figure 16 shows the
proof of concept code of the bug. In the code, 132.div_u uses
a constant value -4, which is —22, as the divisor. Ton compiler
tries to use an optimization that rewrites unsigned division
with 2™ with a left-shift operation with n. However, the
signedness of the divisor is not considered when checking if
the divisor is a power of two. Therefore, the compiler wrongly
considers —22 as 22 and rewrites the divisor into a left-shift
operation with 2. This causes the code to be compiled into
a machine code with wrong semantics, different from the
original unsigned division with -4.

local.get ©
i32.const -4 ;;
i32.div_u

;; Expected: arg® / Oxfffffffc
;; Actual : arg0l® / 4

any value of -24n will work

Figure 16: Proof of concept code of SpiderMonkey ID 1822754
(CVE-2023-29548).

wasmtime ID 8132. RGFuzz found a bug in wasmtime
S390X that incorrectly lowers function calls with spilled
stack arguments. Figure 17 shows the proof of concept code
of the bug. The code contains a function with nine v128
arguments, where the last one is passed through the stack
instead of registers. When spilling the arguments to the stack,
compilers should consider the endianness of the values and
swap the byte order of vectors if needed. However, wasmtime
did not consider the endianness, leading to wrong executions
since the arguments are used with wrong endianness.

To find this bug, a fuzzer must generate a function with
at least nine v128 arguments, making at least one vector
argument spilled to the stack. RGFUZZ could find this bug
since it can generate diverse block structures, unlike the
other fuzzers that cannot generate complex ones. As seen
in Figure 13, other fuzzers may generate the required block
structure, with an extremely low chance of generating such
structures having at least nine parameters.

(func (;0;) (type 0) (param v128 v128 v128 v128 v128 v128
v128 v128 v128) (result v128)
local.get 5
local.get 8
116x8.extmul_high_i8x16_s)
;; Expected: extmul_high(arg5, arg8)
;; Actual : extmul_high(arg5, byte_rev(arg8))

Figure 17: Proof of concept code of wasmtime Issue 8132.

TABLE 4: Supported architectures and runtimes in RGFuzz.

Engines Compilers Optimization Architectures Emulation
Levels
wasmtime Cranelift None, Speed, SpeedAndSize x86_64, ARM64, S390X, RISC-V64 QEMU
Cranelift None, Speed, SpeedAndSize
Wasmer LLVM None, Less, Default, Aggressive x86_64 QEMU
WasmEdge AOT 00, 01, 02, 03, Os, Oz
non-AOT _ x86_64 QEMU
V8 Liftoff, Turbofan - x86_64, ARM64, IA32, ARM, Loong64, Built-in
MIPS64el, S390X, PPC64, RISC-V64,
RISC-V32
SpiderMonkey Baseline, Ion - x86_64, ARM64, IA32, ARM, Loong64, Built-in
MIPS64
JavaScriptCore BBQ, OMG - x86_64, ARM64 QEMU

TABLE 5: Line and rule coverage measured in wasmtime with RGFUZz and other baselines. All coverage values showed statistical
significance (p < 0.05) against RGFUZz. As this table shows, RGFUZZ achieves significantly higher coverage than the other baselines
thanks to our rule-based approach.

Baseline Coverage RGFuzz RGFuzz® wasmtime-differential Fuzzgen ‘Wasm-mutate Xsmith
8 Mean Mean Difference p Mean Difference p Mean Difference P Mean Difference P Mean Difference p
Optimization Line 69.37% 49.29% 20.08% 0.008 36.89% 32.48% 0.008 46.32% 23.05% 0.008 37.85% 31.52% 0.008 39.33% 30.04% 0.008
P Rule 70.64% 51.89% 18.75% 0.012 42.79% 27.85% 0.012 50.97% 19.67% 0.008 40.13% 30.51% 0.008 41.02% 29.62% 0.012
Lowerin: Line 71.43% 70.54% 0.89% 0.008 65.42% 6.01% 0.008 56.61% 14.82% 0.008 27.22% 44.21% 0.008 27.53% 43.90% 0.008
2 Rule 7511% 74.23% 0.88% 0.012 68.73% 6.38% 0.008 56.63% 18.48% 0.008 27.06% 48.05% 0.008 26.47% 48.64% 0.012
Total Line 28.14% 27.12% 1.02% 0.008 17.41% 10.73% 0.012 16.46% 11.68% 0.008 11.85% 16.29% 0.012 20.37% 7.71% 0.008

TABLE 6: Total line coverage measured in versatile runtimes. All show statistical significance (p < 0.05) against RGFUZz. In all engines,
RGFuzz shows the highest coverage compared to baselines, showing the capability of RGFUZZ testing versatile runtimes.

Ensines RGFuzz RGFuzz’ Wasm-smith Xsmith
g Mean Mean Difference p Mean Difference p Mean Difference p
Wasmer 12.22% 12.21% 0.01% 0.234 12.02% 0.19% 0.012 11.33% 0.89% 0.011
WasmEdge 10.82% 10.83% -0.01% 0.154 10.57% 0.25% 0.011 10.37% 0.45% 0.010
V8 19.81% 19.80% 0.01% 0.264 19.53% 0.28% 0.011 17.65% 2.16% 0.011

JavaScriptCore ~ 19.58% 19.55% 0.03% 0.057 19.07% 0.51% 0.012 14.58% 5.00% 0.012

Appendix D.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

D.1. Summary

This paper proposes techniques to improve rule-guided
fuzzing for WebAssembly runtimes. The proposed tool,
RGFuzz, leverages compiler rules in Cranelift compiler
and a new test case generation method to generate correct
and diverse test cases. This leads to the generation of tests
that increase the code coverage and as a result 20 new bugs
were found on multiple WebAssembly engines.

D.2. Scientific Contributions

o Creates a New Tool to Enable Future Science
o Provides a Valuable Step Forward in an Established
Field

D.3. Reasons for Acceptance

1) The authors promised to make publicly available a
tool for fuzzing WebAssembly runtimes. Such a tool
could be very valuable, since it could facilitate rigorous
evaluation of the WebAssembly ecosystem.

2) This paper takes advantage of rules extracted from
Cranelift ISLE to deal with known issues in rule-guided
fuzzing for WebAssembly runtimes. The proposed
techniques led to the discovery of new bugs on multiple
WebAssembly engines.

D.4. Noteworthy Concerns

1) Some of the reviewers raised concerns regarding the
generality of the proposed approach. Additional experi-
ments could clarify how general the approach is.

Appendix E.
Response to the Meta-Review

Response to Concern 1. We believe RGFuzz is still
effective in finding bugs in various runtimes as shown
by the results of RGFUzZ finding 15 bugs in additional
runtimes. Moreover, given that Cranelift, the compiler of
wasmtime, is increasingly being adopted in a growing number
of applications, we believe effectively testing Cranelift can
be considered significant. However, we agree that RGFuzz
showed its limited effectiveness (particularly for rule-guided
fuzzing) in testing the runtimes other than wasmtime.

