RGFuzz: Rule-Guided Fuzzer for
WebAssembly Runtimes

Junyoung Park’', Yunho Kim*?, Insu Yun*'

'KAIST, 2Hanyang University
*Co-corresponding Authors

WebAssembly (WASM)

- Fast, safe, portable, and compact language

- Best for compilation target for other languages

T K

Runtime
(Included in Browsers)

Compilers

WebAssembly Runtimes

- WebAssembly runs on a stack machine

- Stack machine is slow — Let's compile the code!

- Just-In-Time (JIT) compilation to machine code

local.get O

local.get 1

164.and

local.get 1 —
I64.const -1 Compile

164 .xor

164.or

push rbp
mov rbp, rsp
not rcx

mov rax, rdx
or rax, rcx
mov rsp, rbp
pop rbp

ret

Compiler Optimizations

- Optimizations to further boost speed

local.get 0
local.get 1
164.and
local.get 1
164.const -1
164 .xor
164.0r

I

1. Translate to IR

[Args] v0: i64, v1: i64

v2 = band vO0, v1
v3 = iconst.i64 -1
v4 = bxor v1, v3
vb = bor v2, v4
return v5

Compiler Optimizations

- Apply simple rule: v1 A -1 — ~v1 (changed to not)

[Args] v0: i64, v1: i64

v2 = band vO0, v1
v3 = iconst.i64 -1
v4 = bxor v1, v3
v5 = bor v2, v4
return v5

Compiler Optimizations

- Apply simple rule: v1 A -1 — ~v1 (changed to not)

[Args] v0: i64, v1: i64

v2 = band vO0, v1
v3 = iconst.i64 -1
v4 = bxor v1, v3
v5 = bor v2, v4
return v5

Compiler Optimizations

- Apply simple rule: v1 A -1 — ~v1 (changed to not)

[Args] v0: i64, v1: i64

v2 = band vO0, v1

4EEEm— 3 - iconst 64 -1

_ v4 = bxor v1, v3
2.Simplerule 5 = hor v2. v4

VIA-1—~v1 otum vs

Compiler Optimizations

- Apply simple rule: v1 A -1 — ~v1 (changed to not)

[Args] v0: i64, v1: i64 [Args] v0: i64, v1: i64

v2 = band v0, v1 v2 = band vO0, v1
_ v3 = iconst.i64 -1

v4 = bnot v1 _ v4 = bxor v1, v3

v5 = bor v2, v4 2. Simplerule 5 = hor v2, v4

return v5 VIA-1—~v1 otum vs

Compiler Optimizations

- Can also apply complex rule: (vO & v1) | ~v1 — vO | ~v1

[Args] v0: i64, v1: i64
v2 = band vO, v1
v4 = bnot v1

v5 = bor v2, v4
return v

Compiler Optimizations

- Can also apply complex rule: (vO & v1) | ~v1 — vO | ~v1

[Args] v0: i64, v1: i64
v2 = band vO, v1
v4 = bnot v1

v = bor v2, v4
return v

10

Compiler Optimizations

- Can also apply complex rule: (vO & v1) | ~v1 — vO | ~v1

[Args] v0: i64, v1: i64 [Args] vO: i64, v1: i64
v2 = band v0, v1 v2 = V0

v4 = bnot v1 v4 = bnot v1

v5 = bor v2, v4 3. Apply complex rule 5 = por 2, va
return v5 (VO & v1) | ~v1 return v5

— VO | ~v1

11

Semantic Bugs

- What happens if optimization rules are wrongly written?

- Semantic bug: For some input, exec. of original code != exec. of compiled code

local.get O
local.get 1
164.and
local.get 1
164 .const -1
164.x0r
164.or

Are they
equivalent?

—-
I

Compile

push rbp
mov rbp, rsp
not rcx

mov rax, rdx
or rax, rcx
mov rsp, rbp
pop rbp

ret

12

Finding Semantic Bugs

- Differential fuzzing

() =

Generator Test Cases
(Programs)

(K

Finding Semantic Bugs

- Differential fuzzing

Generator Test Cases
(Programs)

BYTECODE
-

o4
ALLIANCE

Execution

14

Finding Semantic Bugs

- Differential fuzzing

() = g =

Generator Test Cases
(Programs)

BYTECODE
-

(X
ALLIANCE

Execution

Compare
Results

15

Finding Semantic Bugs

- Differential fuzzing

(S) w> G =

Generator Test Cases - : Compare
(Programs) ol Results

BYTECODE
«

? How can we generate Execution
e test cases efficiently?

16

Approach 1: Rule-guided Fuzzing

- Challenge 1.1: Complex rules

local.get 0
local.get 1
164.and
Testing needs: local.get 1
|64.const -1

Optimization 164.xor
164.0r

(vO & v1) | ~v1
— VO | ~v1

WASM Program

17

Approach 1: Rule-guided Fuzzing

- Challenge 1.1: Complex rules

?

®
local.get 0

local.get 1

164.and
Testing needs: local.get 1

|64.const -1

Optimization 164.xor
164.0r

(vO & v1) | ~v1
— VO | ~v1

WASM Program

Odds of generating
this randomly?
How do we guide this?

18

Approach 1: Rule-guided Fuzzing

- Challenge 1.1: Complex rules

(vO & v1) | ~v1
— VO | ~v1

Optimization

Testing needs:

?

®
local.get 0

local.get 1
164.and
local.get 1
164.const -1
164 .xor
164.0r

WASM Program

Odds of generating
this randomly?
How do we guide this?

[Preliminary Study]
SOTA fuzzers failed to

generate such program
(Xsmith, wasm-smith)

19

Approach 1: Rule-guided Fuzzing

- Challenge 1.1: Complex rules

Solution: Rule-guided fuzzing
— Extract the rules and use

local.get 0 them in fuzzing

local.get 1

164.and
Testing needs: local.get 1

|64.const -1

Optimization 164.xor
164.0r

(vO & v1) | ~v1
— VO | ~v1

WASM Program

20

Approach 1: Rule-guided Fuzzing

- Challenge 1.1: Complex rules

Solution: Rule-guided fuzzing
— Extract the rules and use

local.get 0 them in fuzzing

local.get 1

i64.and [Challenge]
(VO & v1) | ~v1 Testing needs: local.get 1 Compiler rules: Defined in IR

— VO | ~v1 i64 const -1 Programs: Written in WASM

Optimization 164.xor
164.0r

WASM Program

21

Approach 1: Rule-guided Fuzzing

- Challenge 1.1: Complex rules

Solution: Rule-guided fuzzing
— Extract the rules and use
them in fuzzing

local.get 0
local.get 1
i64.and [Challenge]
(VO & v1) | ~v1 Testing needs: local.get 1 Compiler rules: Defined in IR
— VO | ~v1 i64 const -1 Programs: Written in WASM
Optimization) 164.xor 5
IR vs. WASM i64 or How do we close the gap?*

WASM Program

22

Approach 1.1: Instruction-level Inference

- Challenge 1.2: Closing the gap between IR and WebAssembly

Instruction-level Inference;

band — i64.and
bor — i64.0or
bnot — ??7?

23

Approach 1.1: Instruction-level Inference

- Challenge 1.2: Closing the gap between IR and WebAssembly

Instruction-level Inference;

We do not have a WASM instruction

band — i64.and _
that directly maps to bnot

bor — i64.0or
bnot — ??7?

24

Approach 1.2: Rule-level Inference

- Challenge 1.2: Closing the gap between IR and WebAssembly

Rule-level Inference:

band — i64.and Refer to other rules
bor — i64.or for missing linkages
bnot — opt. rule*

25

Approach 1.2: Rule-level Inference

- Challenge 1.2: Closing the gap between IR and WebAssembly

Rule-level Inference: v3 = iconst.i64 -1

band — i64.and va = bxor v, v3 Refer to other rules

bor —i64.or ¥ into for missing linkages

bnot — opt. rule*® v4 = bnot v1

26

Approach 2: Reverse Stack-based Generation

- Challenge 2: Generate structures or instructions diversely
- AST-based : limited structure diversity (e.g., blocks)
- Stack-based: limited instruction diversity (e.g., select)

@ block

f—-182437}
[— [i32]

KY

i32 i32 132
| |
@ select
i32
| |
@ i32.add '
i32

AST-based

Instructions
@ local.get O
@ local.get 1
@ i32.add seleet
@ block
[— [i32i32]

Stack

I

[i32]
[i32i32]
[i32]
[(32i32i32]

Stack-based

Approach 2: Reverse Stack-based Generation

- Solution: Reverse stack-based generation
- Stack-based generation, but done reversely

28

Approach 2: Reverse Stack-based Generation

- Solution: Reverse stack-based generation
- Stack-based generation, but done reversely
- Observation: Instructions have only 0-1 return types
— Less stack state constraints on generating instructions

AS

Approach 2: Reverse Stack-based Generation

- Solution: Reverse stack-based generation
- Stack-based generation, but done reversely
- Observation: Instructions have only 0-1 return types
— Less stack state constraints on generating instructions
e.g., v128.bitselect requires 3 v128s on parameters, but only 1 in returns

30

Evaluation

- Target Runtimes: 6 runtimes
- wasmtime, Wasmer, WasmEdge, V8, SpiderMonkey, JavaScriptCore
- Tested various optimization / architectures

- Found 20 new bugs, with one CVE ID (CVE-2023-29548)

31

Evaluation

- Coverage
- Able to cover significantly more in wasmtime

Baseline Civernza RGFuzz RGFuzz wasmtime-differential Fuzzgen Wasm-mutate Xsmith
g Mean Mean Difference Mean Difference P Mean Difference Mean Difference] Mean Difference p

Optimization

Line 69.37% 49.29% 20.08% 36.89% 32.48% 0.008 46.32% 23.05% 37.859 31.52% 39.33% 30.04% 0.008
Rule 70.64 18.75% 42.79% 27.85% 0.012 50.97% 19.67% 40.13 30.51% 41.02% 29.62% 0.012

Lowering Rule

Total Line 28.14% 27.12% 1.02% 17.41% 10.73% 0012 16.46% 11.68% 11.85% 16.29% 20.37% 7.77% 0.008

0.88% 68.73% 6.38% 0.008 56.63% 18.48% 27.06% 48.05% 26.47% 48.64% 0.012

Line 71.43 .54% 0.89% 65.42% 6.01% 0.008 56.61% 14.82% 44.21% 27.53% 43.90% 0.008
75.11

32

Evaluation

- Coverage
- Able to cover significantly more in wasmtime
- Could also efficiently test other runtimes
- Rule-guided fuzzing was only effective in wasmtime though

Baseline Civernza RGFuzz RGFuzz wasmtime-differential Fuzzgen Wasm-mutate Xsmith
g Mean Mean Difference Mean Difference P Mean Difference Mean Difference] Mean Difference p

Outiinsaition Line 69.37% 49.29% 20.08% 36.89% 32.48% 0.008 46.32% 23.05% 37.859 31.52% 39.33% 30.04% 0.008
P Rule 70.64 % 51.89% 18.75% 42.79% 27.85% 0.012 50.97% 19.67% 40.13 30.51% 41.02% 29.62% 0.012

s Line 71.43% 70.54% 0.89% 65.42% 6.01% 0.008 56.61% 14.82% 44.21% 27.53% 43.90% 0.008
e Rule 75.11% 74.23% 0.88% 68.73% 6.38% 0.008 56.63% 18.48% 27.06% 48.05% 26.47% 48.64% 0.012

Total Line 28.14% 27.12% 1.02% 17.41% 10.73% 0012 16.46% 11.68% 11.85% 16.29% 20.37% 7.77% 0.008

Haines RGFuzz RGFuzz® Wasm-smith Xsmith
g Mean Mean Difference ‘ Mean Difference Mean Difference
Wasmer 12.22% 12.21% 0.01% 12.02% 0.19% 11.33%
WasmEdge 10.82% 10.83% -0.01% 10.57% 0.25% 10.37%

A\ 19.81% 19.80% 0.01% 19.53% 0.28% 17.65%
JavaScriptCore 19.58% 19.55% 0.03% 19.07% 0.51% 14.58%

Case Study

- Could even cover super complex optimizations

(rule (simplify (bor ty @ $I64
(bor ty
(bor ty
(ishl ty x (iconst_u ty 56))
(ishl ty
(band ty x (iconst_u ty 0x£ff00))
(iconst_u ty 40)))
(bor ty
(ishl ty
(band ty x (iconst_u ty 0xff_0000))
(iconst_u ty 24))
(band ty x (icanst_u ty SxE£66.6986)) (rule 6 (lower (shuffle a b (ul28_from_immediate
(iconst_u ty 8))))

0x1f0f_leOe_1d0d_1cOc_1b0Ob_1a0a_1909_1808)))
(x64_punpckhbw a b))

(bor ty
(bor ty
(band ty
(ushr ty x (iconst_u ty 8))
(iconst_u ty 0xff00_0000))

e Specific Immediates

(ushr ty x (iconst_u ty 24))

(iconst_u ty 0xff_0000)))
(bor ty
(band ty
(ushr ty x (iconst_u ty 40))
(iconst_u ty 0x£ff00))
(ushr ty x (iconst_u ty 56))))))
(bswap ty x))

Complex Optimization Rule

Case Study

- Could find optimization bugs!

local.get
local.get
local.get
local.get

164.gt_s
select

-
s

-
’

-
s

; Actual : max(arg®, argl)

7

Expected: min(arg®, argl)

min mistaken as max
wasmtime issue 8114

local.get 2 ;; arg2: O0xfff8

f64.1oad

f64.const 0

local.get 0 ;; arg0®: 1

select

;; Expected: mem[arg2] or 0.0 based on arg®
«= Kctuyal = Trap

Load more bytes than expected (as xmm)
wasmtime issue 8112

35

(CYRELCEWENE

- Two main approaches
- Rule-guided fuzzing
- Reverse stack-based generation

- Showed effectiveness in finding optimization bugs

36

