
From the Vulnerability to the Victory:
A Chrome Renderer 1-Day Exploit’s
Journey to v8CTF Glory

1

Haein Lee & Insu Yun
KAIST Hacking Lab

TyphoonCon 2024

Agenda

◉ About us
◉ Introduction to Google v8CTF
◉ The Vulnerability: CVE-2023-6702
◉ The Exploit: Chrome-118
◉ Conclusion & Takeaways

2

About us

3

Haein Lee

◉ PhD student

@ KAIST Hacking Lab

Insu Yun

◉ Assistant professor

@ KAIST EE & GSIS

◉ Leader of KAIST Hacking Lab

Browser is an intriguing target

4

Introduction to Google v8CTF

◉ Bug(exploit) bounty program for V8 JavaScript engine
○ Orthogonal to the Chrome VRP

◉ Originated from kCTF infra
◉ Accept 0day/1day exploits

○ Average runtime < 5 min
○ Success rate > 80%

◉ Reward of $10,000

5

This talk

6

The Vulnerability: CVE-2023-6702

7

The Vulnerability: Basics

◉ Type confusion bug in V8
◉ Issue/Bug Report: https://issues.chromium.org/issues/40941600
◉ No regression test :(

8

Bug Introduced
2020-05-13

[Promise.any] Implement async
stack traces for Promise.any

Bug Report
2023-11-10

v8CTF submit
2024-01-12

Disclosure
2024-02-23

Stable Channel Update
2023-12-12

Here we are!

https://issues.chromium.org/issues/40941600
https://chromium-review.googlesource.com/c/v8/v8/+/2198983

Original Report

◉ The report does not contain exploit code

◉ But, there’s a comment that mentions its exploitability

9

The Vulnerability: Patch

10

◉ The problem occurs when the closure has already run while processing
async stack trace

Prerequisites: Async stack trace

11
https://docs.google.com/document/d/13Sy_kBIJGP0XT34V1CV3nkWya4TwYx9L3Yv45LdGB6Q/edit

Prerequisites: Async stack trace

12
https://docs.google.com/document/d/13Sy_kBIJGP0XT34V1CV3nkWya4TwYx9L3Yv45LdGB6Q/edit

The Vulnerability: Patch

13

◉ The problem occurs when the closure has already run while processing
async stack trace

What’s the closure?

14

Promise.all

15

◉ Explicit built-in function

◉ Input: An iterable of promises / Output: A single promise

◉ Behavior
○ From a given promise array, it tries to resolve all promises.
○ When all of the input promises fulfill, the returned promise fulfills with an

array of the fulfillment values.
○ When any of the input promises rejects, the returned promise rejects with

the first rejection reason.

Promise.all

16

promise1.then(<res, rej>)

https://developer.mozilla.org/ko/docs/Web/JavaScript/Reference/Global_Objects/Promise/all

promise2.then(<res, rej>) promise3.then(<res, rej>)

https://developer.mozilla.org/ko/docs/Web/JavaScript/Reference/Global_Objects/Promise/all

Promise.all

17

promise1.then(<res, rej>)

Promise.all Resolve Element Closure Returned Promise’s reject function

(err) => console.log(err)

Promise.all

18

promise1.then(<res, rej>)

Promise.all Resolve Element Closure Returned Promise’s reject function

(err) => console.log(err)

What’s Promise.all Resolve Element Closure’s role?
- It captures the fulfillment value of each promise

- It maintains the array of fulfillment values

Prerequisites: The closure

19

◉ Intrinsic built-in function
◉ Utility function for Promise.all

○ Resolve handler for each promise

The Vulnerability: Patch

20

◉ The problem occurs when the closure has already run while processing
async stack trace

Approach

21

Problem: We can’t access the closure, directly…

Grab the closure Call the closure
Execute the

patched code

How to get the intrinsic built-in function?

22Synchronous promise resolving (from test262)

NativeContext as a marker

2323

Approach

24

Grab the closure Call the closure
Execute the

patched code

Execute the patched code

◉ The idea is reusing the below sample code

25

PoC

26

① Use synchronous Promise.all to
grab the closure

PoC

27

② Set the closure as foo’s fulfill_handler

* Note that the handler has already run

PoC

28

③ Throw an error

Create an async stack trace

Create foo’s stack frame

Fulfill handler (the closure)
has already run…

Crash!

29

Crash location?

30

Type confusion

31

Type confusion

32

Expect: Context→PromiseCapability

Actual : NativeContext→JSGlobalProxy

Type confusion

33

Expect: Context→PromiseCapability→JSPromise

Actual : NativeContext→JSGlobalProxy→hash

Type confusion between
PromiseCapability and JSGlobalProxy

34

hash

Actual: hash value

capability->promise()

Expected: JSPromise

Hash generating function

◉ Can we control the hash value? No

◉ Total random in range (0, 0xfffff)

35

Crash: Use hash value as a pointer

◉ By the pointer compression, V8 heap pointer is
represented as 4 bytes

◉ It interprets the hash value (SMI) as V8 heap pointer

36

JSGlobalProxy

hash
Crash!

Use hash value as pointer

◉ By the pointer compression, V8 heap pointer is
represented as 4 bytes

◉ It interprets the hash value (SMI) as V8 heap pointer

◉ With sprayed JSPromise, we can dereference
fake JSPromise with the hash value

37

JSPromise

JSPromise

JSPromise

JSPromise

…

JSGlobalProxy

hash

The Exploit

1. Spray JSPromise objects

2. Use the hash value as a JSPromise pointer

3. Create a fake async stack frame

4. Retrieve an oob array from the fake async stack frame

38

1. Spray JSPromise objects

39

map

properties

elements

reactions_or_result

flags

JSPromise

SMI as pointer

40

SMI as pointer

◉ The hash value ranges in (0, 0xfffff)

41

SMI as pointer

◉ The hash value ranges in (0, 0xfffff)

◉ In memory, it will be stored in (0, 0xfffff << 1) with even number

42

SMI as pointer

◉ The hash value ranges in (0, 0xfffff)

◉ In memory, it will be stored in (0, 0xfffff << 1) with even number

43

Observations

1. Interpreted pointer address will be an odd number

2. Spray JSPromise in range (0, 0xfffff << 1)

1. Spray JSPromise objects

44

map

properties

elements

reactions_or_result

flags

JSPromise

1. “<< 8” to make JSPromise address odd number

2. Use small for-loops to fit in

the range (0, 0xfffff << 1)

SMI as pointer (example)

45

Hash: 0x4ee16

Make the exploit more reliable

46

Make the exploit more reliable

47

◉ Create iframes with a different domain
◉ Crash in iframe does not effect to main process

https://blog.exodusintel.com/2019/01/22/exploiting-the-magellan-bug-on-64-bit-chrome-desktop/

Create fake async stack frame

48

No crash!

Create fake async stack frame

49

Create fake async stack frame

50

Create fake async stack frame

51

Append fake async stack frame

Beyond crash

52

Check the promise is valid to append an async frame

JSPromise layout

53

JSPromise

54

0x0018b5a9

Address of fake

PromiseReaction

0x00000000

JSPromise

Beyond crash

55

Check the promise is valid to append an async frame

PromiseReaction

56

PromiseReaction

57

0x000013cd

0x00000000

fulfill_handler

PromiseReaction

Beyond crash

58

fulfill_handler

59

0x001843bd

0x00000219

0x00000219

0x00043c80

0x00025575

Function

address of Context

Beyond crash

60

Beyond crash

61

JSGeneratorObject

62

0x0018f3f9

func_addr

JSGeneratorObject

receiver

0x00000000

Beyond crash

63

Fake objects

64

Fake async frame!

65

Then, use Error.prepareStackTrace
to access the fake async frame

66

getThis to fake async frame

67

0x00018f3f9

function

JSGeneratorObject

receiver

0x00000000

JSArray map

properties

elements

length (0x42424242)

OOB array

Retrieve the OOB array

68

OOB Array

69

Towards RCE

1. Construct caged_read/caged_write primitive
2. V8 Heap Sandbox Escape

○ Corrupt bytecode array
3. Spawn iframes to increase reliability

70

V8 Heap Sandbox

1. Introduce 1TB V8 Sandbox
○ Limit AAW primitive from 64bit → 40bit

2. Access JIT code using Code Pointer Table
○ Indexing instead directly accessing

3. Draw off Bytecode outside of 1TB cage

71

V8 sandbox escape

◉ BytecodeArray is still in V8 sandbox
○ Interpreter treats bytecode as trusted

◉ By corrupting BytecodeArray, we can execute arbitrary bytecode
○ Corrupting stack

◉ Leak d8 binary base address → Pivot stack → ROP

72Reference: 2023 Google CTF write-up

RCE in d8

73

Demo

74

Conclusion

◉ Vulnerability
○ CVE-2023-6702 type confusion bug in async stack trace
○ Grab the closure → Call the closure → Trigger async stack trace

◉ Exploit
○ Use hash value as pointer by heap spraying
○ Create a fake async frame and retrieve OOB array (fakeobj primitive)
○ Corrupt bytecode array to escape V8 heap sandbox
○ Create iframes with different domain to increate the reliability

75

Take-home message

◉ Bug reward is good indicator for exploitability
◉ Test262 contains various JavaScript code pattern
◉ Use hash value as a pointer thanks to pointer compression

76Thanks to KAIST Hacking Lab

Write-up in https://github.com/kaist-hacking/CVE-2023-6702

https://github.com/kaist-hacking/CVE-2023-6702

