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About us
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Browser is an intriguing target
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Introduction to Google v8CTF

◉ Bug(exploit) bounty program for V8 JavaScript engine
○ Orthogonal to the Chrome VRP

◉ Originated from kCTF infra
◉ Accept 0day/1day exploits

○ Average runtime < 5 min
○ Success rate > 80%

◉ Reward of $10,000
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This talk
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The Vulnerability: CVE-2023-6702
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The Vulnerability: Basics

◉ Type confusion bug in V8
◉ Issue/Bug Report: https://issues.chromium.org/issues/40941600
◉ No regression test :(
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Bug Introduced
2020-05-13

[Promise.any] Implement async 
stack traces for Promise.any

Bug Report
2023-11-10

v8CTF submit
2024-01-12

Disclosure
2024-02-23

Stable Channel Update
2023-12-12

Here we are!

https://issues.chromium.org/issues/40941600
https://chromium-review.googlesource.com/c/v8/v8/+/2198983


Original Report

◉ The report does not contain exploit code

◉ But, there’s a comment that mentions its exploitability
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The Vulnerability: Patch

10

◉ The problem occurs when the closure has already run while processing 
async stack trace 



Prerequisites: Async stack trace
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https://docs.google.com/document/d/13Sy_kBIJGP0XT34V1CV3nkWya4TwYx9L3Yv45LdGB6Q/edit



Prerequisites: Async stack trace
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https://docs.google.com/document/d/13Sy_kBIJGP0XT34V1CV3nkWya4TwYx9L3Yv45LdGB6Q/edit



The Vulnerability: Patch
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◉ The problem occurs when the closure has already run while processing 
async stack trace 



What’s the closure?
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Promise.all
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◉ Explicit built-in function

◉ Input: An iterable of promises / Output: A single promise

◉ Behavior
○ From a given promise array, it tries to resolve all promises.
○ When all of the input promises fulfill, the returned promise fulfills with an 

array of the fulfillment values.
○ When any of the input promises rejects, the returned promise rejects with 

the first rejection reason.



Promise.all
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promise1.then(<res, rej>)

https://developer.mozilla.org/ko/docs/Web/JavaScript/Reference/Global_Objects/Promise/all

promise2.then(<res, rej>) promise3.then(<res, rej>)

https://developer.mozilla.org/ko/docs/Web/JavaScript/Reference/Global_Objects/Promise/all


Promise.all
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promise1.then(<res, rej>)

Promise.all Resolve Element Closure Returned Promise’s reject function

(err) => console.log(err)



Promise.all
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promise1.then(<res, rej>)

Promise.all Resolve Element Closure Returned Promise’s reject function

(err) => console.log(err)

What’s Promise.all Resolve Element Closure’s role?
- It captures the fulfillment value of each promise

- It maintains the array of fulfillment values



Prerequisites: The closure
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◉ Intrinsic built-in function
◉ Utility function for Promise.all

○ Resolve handler for each promise



The Vulnerability: Patch
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◉ The problem occurs when the closure has already run while processing 
async stack trace 



Approach
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Problem: We can’t access the closure, directly…

Grab the closure Call the closure
Execute the 

patched code



How to get the intrinsic built-in function?

22Synchronous promise resolving (from test262)



NativeContext as a marker

2323



Approach

24

Grab the closure Call the closure
Execute the 

patched code



Execute the patched code

◉ The idea is reusing the below sample code
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PoC
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① Use synchronous Promise.all to 
grab the closure



PoC
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② Set the closure as foo’s fulfill_handler

* Note that the handler has already run



PoC
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③ Throw an error

Create an async stack trace

Create foo’s stack frame

Fulfill handler (the closure) 
has already run…



Crash!
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Crash location?
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Type confusion

31



Type confusion
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Expect: Context→PromiseCapability

Actual : NativeContext→JSGlobalProxy



Type confusion
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Expect: Context→PromiseCapability→JSPromise

Actual : NativeContext→JSGlobalProxy→hash



Type confusion between
PromiseCapability and JSGlobalProxy
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hash

Actual: hash value

capability->promise()

Expected: JSPromise



Hash generating function

◉ Can we control the hash value? No

◉ Total random in range (0, 0xfffff)
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Crash: Use hash value as a pointer

◉ By the pointer compression, V8 heap pointer is 
represented as 4 bytes

◉ It interprets the hash value (SMI) as V8 heap pointer
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JSGlobalProxy

hash
Crash!



Use hash value as pointer

◉ By the pointer compression, V8 heap pointer is 
represented as 4 bytes

◉ It interprets the hash value (SMI) as V8 heap pointer

◉ With sprayed JSPromise, we can dereference            
fake JSPromise with the hash value
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JSPromise

JSPromise

JSPromise

JSPromise

…

JSGlobalProxy

hash



The Exploit

1. Spray JSPromise objects

2. Use the hash value as a JSPromise pointer

3. Create a fake async stack frame

4. Retrieve an oob array from the fake async stack frame
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1. Spray JSPromise objects

39

map

properties

elements

reactions_or_result

flags

JSPromise



SMI as pointer
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SMI as pointer

◉ The hash value ranges in (0, 0xfffff)
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SMI as pointer

◉ The hash value ranges in (0, 0xfffff)

◉ In memory, it will be stored in (0, 0xfffff << 1) with even number
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SMI as pointer

◉ The hash value ranges in (0, 0xfffff)

◉ In memory, it will be stored in (0, 0xfffff << 1) with even number
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Observations

1. Interpreted pointer address will be an odd number

2.  Spray JSPromise in range (0, 0xfffff << 1)



1. Spray JSPromise objects
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map

properties

elements

reactions_or_result

flags

JSPromise

1. “<< 8” to make JSPromise address odd number

2. Use small for-loops to fit in 

the range (0, 0xfffff << 1)



SMI as pointer (example)
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Hash: 0x4ee16



Make the exploit more reliable
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Make the exploit more reliable
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◉ Create iframes with a different domain
◉ Crash in iframe does not effect to main process

https://blog.exodusintel.com/2019/01/22/exploiting-the-magellan-bug-on-64-bit-chrome-desktop/



Create fake async stack frame
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No crash!



Create fake async stack frame
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Create fake async stack frame
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Create fake async stack frame
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Append fake async stack frame



Beyond crash
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Check the promise is valid to append an async frame



JSPromise layout
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JSPromise
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0x0018b5a9

Address of fake 

PromiseReaction

0x00000000

JSPromise



Beyond crash
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Check the promise is valid to append an async frame



PromiseReaction
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PromiseReaction
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0x000013cd

0x00000000

fulfill_handler

PromiseReaction



Beyond crash
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fulfill_handler
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0x001843bd

0x00000219

0x00000219

0x00043c80

0x00025575

Function

address of Context



Beyond crash
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Beyond crash
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JSGeneratorObject
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0x0018f3f9

func_addr

JSGeneratorObject

receiver

0x00000000



Beyond crash
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Fake objects
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Fake async frame!
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Then, use Error.prepareStackTrace
to access the fake async frame
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getThis to fake async frame
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0x00018f3f9

function

JSGeneratorObject

receiver

0x00000000

JSArray map

properties

elements

length (0x42424242)

OOB array



Retrieve the OOB array
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OOB Array
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Towards RCE

1. Construct caged_read/caged_write primitive
2. V8 Heap Sandbox Escape

○ Corrupt bytecode array
3. Spawn iframes to increase reliability
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V8 Heap Sandbox

1. Introduce 1TB V8 Sandbox
○ Limit AAW primitive from 64bit → 40bit

2. Access JIT code using Code Pointer Table
○ Indexing instead directly accessing

3. Draw off Bytecode outside of 1TB cage
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V8 sandbox escape

◉ BytecodeArray is still in V8 sandbox
○ Interpreter treats bytecode as trusted

◉ By corrupting BytecodeArray, we can execute arbitrary bytecode
○ Corrupting stack

◉ Leak d8 binary base address → Pivot stack → ROP

72Reference: 2023 Google CTF write-up



RCE in d8
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Demo
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Conclusion

◉ Vulnerability
○ CVE-2023-6702 type confusion bug in async stack trace
○ Grab the closure → Call the closure → Trigger async stack trace

◉ Exploit
○ Use hash value as pointer by heap spraying
○ Create a fake async frame and retrieve OOB array (fakeobj primitive)
○ Corrupt bytecode array to escape V8 heap sandbox
○ Create iframes with different domain to increate the reliability
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Take-home message

◉ Bug reward is good indicator for exploitability
◉ Test262 contains various JavaScript code pattern
◉ Use hash value as a pointer thanks to pointer compression

76Thanks to KAIST Hacking Lab

Write-up in https://github.com/kaist-hacking/CVE-2023-6702

https://github.com/kaist-hacking/CVE-2023-6702

