
QueryX: Symbolic Query on Decompiled Code
for Finding Bugs in COTS Binaries

HyungSeok Han†∗
, JeongOh Kyea

†
, Yonghwi Jin

†
, Jinoh Kang

†
,

Brian Pak
†
, Insu Yun*

†
Theori Inc.

∗
KAIST

(Currently postdoc in Georgia Tech)

Static Analysis

• One of the most popular techniques for automatic bug finding

2

Scalability vs Accuracy

Extensible Static Checking Tools

• Static analysis + Domain knowledge (Query)

3

Source Code
• C / C++
• LLVM IR
• Java
• ...

Bug
Candidates

CodeQL
joern

Sys (Sec ‘20)
...

Query

Domain
knowledge

Extensible Static Checking Tools

• Static analysis + Domain knowledge (Query)

Binary ?????

Extensible Static Binary Checking Tools

• Query based on binary IRs

5

Binary IR
• Vex IR
• BIL
• ...

Bug
Candidates

angr
BAP
...

Query

Domain
knowledge

Extensible Static Binary Checking Tools

• Query based on binary IRs

Binary IR
• Vex IR
• BIL
• ...

Bug
Candidates

angr
BAP
...

Query

Domain
knowledge Binary IR???

Give me decompiled code
instead of binary IR

Inconsistency b/w Analyst & Query

• Analysts mostly work with decompiled code due to its high-
level information such as high-level control flows and types.

• But, queries are based on binary IRs because binary IRs are
more analyzer-friendly.

7

Extensible Static Binary Checking Tools

• Static analysis + Domain knowledge (Query)

Inconsistency b/w Analyst & Query

Cannot handle binaries
Decompiled

code

The Convergence of Source Code and Binary
Vulnerability Discovery - A Case Study (AsiaCCS ‘22)

• Feed decompiled code from Hex-Rays to CodeQL and joern.
• Compared to tools with the original source code, tools with
decompiled code got less TP and more FP because..

Original code Decompiled code

X: 0x42
Y: 0x43

X: 0x42
Y: ????

The Convergence of Source Code and Binary
Vulnerability Discovery - A Case Study (AsiaCCS ‘22)

• Feed decompiled code from Hex-Rays to CodeQL and joern.
• Compared to tools with the original source code, tools with
decompiled code got less TP and more FP because..

Original code Decompiled code

X: 0x42
Y: 0x43

X: 0x42
Y: ????

Previous source code analysis tools are
binary-unaware!

QueryX: Query on Decompiled Code

• Static analysis + Domain knowledge (Query)

Symbolic

Goals & Approaches of QueryX

1. Binary-aware analysis on decompiled code
• Analysis based on our new IR, DNR

2. Analyst-friendly symbolic query
• Symbolic query based on decompiled code and callbacks
• JavaScript-like query

3. Scalable analysis with analyst-friendly symbolic query
• Under-constrained symbolic execution
• CFG reduction based on callbacks and their dependencies
=> Check our paper

QueryX Architecture

Analyzer

Binary Lifter

Query Interpreter

Syntactic Matching

Data-flow Analysis

Symbolic Analysis

DNR

Analysis Rule

Decompiled Code

Analysis Result

QueryX

Query

Result

Decompiler

Goals & Approaches of QueryX

1. Binary-aware analysis on decompiled code
• Analysis based on our new IR, DNR

2. Analyst-friendly symbolic query
• Symbolic query based on decompiled code and callbacks
• JavaScript-like query

3. Scalable analysis with analyst-friendly symbolic query
• Under-constrained symbolic execution
• CFG reduction based on callbacks and their dependencies

Decompiler-Neutral Representation (DNR)

Missing global variable information
(e.g, initial value, RWX permission)

Resolve by adding
Program Data to DNR

Decompiler-Neutral Representation (DNR)

Resolve by considering
memory layout while lifting

real binary (w/ memory layout):
X: 0x42
Y: 0x43

w/o memory layout:
X: 0x42
Y: 0xff // undefined value

Decompiler-Neutral Representation (DNR)

stack = Alloc(0x8)
// v1: @(stack + 0x0)
// v2: @(stack + 0x4)

Store(stack,
Load(ProgAddr(0x2010a4), 4),
4)

Store (stack + 0x4, 0x43, 4)

Call (print_pos, [|stack|])

Decompiler-Neutral Representation (DNR)

So, should we write queries based on DNR?

We can write queried based on
decompiled code because DNR contains
which decompiled code is lifted to the

corresponding DNR.

Goals & Approaches of QueryX

1. Binary-aware analysis on decompiled code
• Analysis based on our new IR, DNR

2. Analyst-friendly symbolic query
• Symbolic query based on decompiled code and callbacks
• JavaScript-like query

3. Scalable analysis with analyst-friendly symbolic query
• Under-constrained symbolic execution
• CFG reduction based on callbacks and their dependencies

QueryX’s Symbolic Query Example (1)

• A simple query for finding simple heap overflow

The copy size of memcpy can be
greater than the size of dst.

QueryX’s Symbolic Query Example (1)

• A simple query for finding simple heap overflow

Perform symexec from the entry of
func based on symRule

QueryX’s Symbolic Query Example (1)

• A simple query for finding simple heap overflow

Recursively traverse AST nodes
in func and call symRule.

QueryX’s Symbolic Query Example (1)

• A simple query for finding simple heap overflow

Register collectAlloc as callbacks
of malloc call nodes

Register checkMemcpy as callbacks
of memcpy call nodes

QueryX’s Symbolic Query Example (1)

• A simple query for finding simple heap overflow

Save allocated addresses and their
sizes to the current symstate.

Check whether the copy size can
be greater than the size of dst.

QueryX’s Symbolic Query Example (1)

• A simple query for finding simple heap overflow

QueryX’s Symbolic Query Example (1)

• A simple query for finding simple heap overflow

Check whether the copy size can be
greater than the size of dst

under the current path constraints.

Find the size of dst

QueryX’s Symbolic Query Example (1)

QueryX’s Symbolic Query Example (2)

CVE-2021-31979 (Heap overflow due to integer overflow)

2byte type &&
not constant

1

dst is from
alloc result

2
can be greater
than AclSize

3

1

• A query for finding heap overflow due to integer overflow in
Windows kernel

QueryX’s Symbolic Query Example (2)

CVE-2021-41378, one of heap overflow bugs QueryX found

2byte type &&
not constant

1

dst is from
alloc result

2can be greater
than AclSize

3

angr vs QueryX in the Example

CVE-2021-31979 (Heap overflow due to integer overflow)

2byte type &&
not constant

1

dst is from
alloc result

2
> AclSize

3

Binary IRs do not have such information
(e.g., type, constant value..) 1

angr: 267 LoC, QueryX: 33 LoC

Evaluation (1-day)

• Comparison on the Dataset of Mantovani et al.
(“The convergence of source code and binary vulnerability
discovery–a case study”, AsiaCCS ‘22)

Less FP More TP

Evaluation (1-day)

• Comparison on the Dataset of Mantovani et al.
(“The convergence of source code and binary vulnerability
discovery–a case study”, AsiaCCS ‘22)

Binary-unaware
Lack of high-level info

(e.g., type)

Evaluation (0-day)

• QueryX found 15 previous unknown vulnerabilities including
10 CVEs and earned $180,000 from MS bug bounty program.

More in the paper

• Scalable analysis with analyst-friendly symbolic query

• 4 kinds queries for finding 0-days

• More detail comparison against other tools

• Other evaluations and details

34

Thank you

	QueryX: Symbolic Query on Decompiled Code for Finding Bugs in COTS Binaries
	Static Analysis
	Extensible Static Checking Tools
	Extensible Static Checking Tools
	Extensible Static Binary Checking Tools
	Extensible Static Binary Checking Tools
	Inconsistency b/w Analyst & Query
	Extensible Static Binary Checking Tools
	The Convergence of Source Code and Binary Vulnerability Discovery - A Case Study (AsiaCCS ‘22)
	The Convergence of Source Code and Binary Vulnerability Discovery - A Case Study (AsiaCCS ‘22)
	QueryX: Query on Decompiled Code
	Goals & Approaches of QueryX
	QueryX Architecture
	Goals & Approaches of QueryX
	Decompiler-Neutral Representation (DNR)
	Decompiler-Neutral Representation (DNR)
	Decompiler-Neutral Representation (DNR)
	Decompiler-Neutral Representation (DNR)
	Goals & Approaches of QueryX
	QueryX’s Symbolic Query Example (1)
	QueryX’s Symbolic Query Example (1)
	QueryX’s Symbolic Query Example (1)
	QueryX’s Symbolic Query Example (1)
	QueryX’s Symbolic Query Example (1)
	QueryX’s Symbolic Query Example (1)
	QueryX’s Symbolic Query Example (1)
	QueryX’s Symbolic Query Example (1)
	QueryX’s Symbolic Query Example (2)
	QueryX’s Symbolic Query Example (2)
	angr vs QueryX in the Example
	Evaluation (1-day)
	Evaluation (1-day)
	Evaluation (0-day)
	More in the paper
	Thank you

