
Fuzzing@Home: Distributed Fuzzing on
Untrusted Heterogeneous Clients

-The 25th International Symposium on Research in Attacks, Intrusions and Defenses
(RAID2022)

Daehee Jang, Ammar Askar, Insu Yun, Stephen Tong, Yiqin Cai, Taesoo Kim

Large-Scale Fuzzing
There are so many codes to fuzz/test
 OSSFuzz has more than 300 open-source projects ported for fuzzing
 Google use ClusterFuzz: immense distributed fuzzing infrastructure
 Mainly inspired from ClusterFuzz

1

Background - ClusterFuzz
Google’s Large-Scale Distributed Fuzzing System
 ~ 30,000 VM Instances
 ~ 340 open source fuzz targets running
 ~ 25,000 bugs discovered.

Designed as Private Infrastructure
 Single owner (Google) controls overall infrastructure/results

2

Fuzzing@Home - Motivation
Why not apply “@home” idea to fuzzing?
 Fuzzing works better in parallel
 People can utilize spare computing power for fuzzing
 Organizations can collaborate for fuzz-testing their product
 Multiple companies develop software together
 Multiple companies do bug-bounty together

3

Introduction & Design

4

Fuzzing@Home Overview

Components
 Fuzzing Pool: Group of people (nodes) fuzzing the same target
 Fuzzing Node: Organization/People’s computing device (PC, laptop, mobile, …)
 Heterogeneous, Untrusted

 Control Server: Fuzzing pool master
 Verification, Deduplication, Scheduling optimization…

5

Fuzzing@Home – Security Problem
Collaborative “public” network infrastructure for fuzzing
 Collaborating participants are untrusted
 Fuzzing may involve money

 How do we tell if a participant is working?
 -> Goofing Problem

Solution: Proof-of-Work (PoW) for fuzzing
 Design Proof-of-Fuzzing-Work (PoFW)

6

Fuzzing@Home – Security Problem
PoW vs PoFW?
 Existing PoW computations have estimated time to get result
 E.g., Breaking RSA-XXX with CPU-YYY usually takes ZZZ hours.

 Existing PoW computations gives output data as a computing result (challenge user)
 E.g., Bitcoin mining (hash)
 E.g., Cryptographic algorithm (decrypted data)

 Fuzzing has no estimated time to get result
 E.g., Crashing chrome-v8 with CPU-YYY usually takes ZZZ hours..??

 Fuzzing do not yield result output data in its execution (can’t challenge user)
 E.g, void function

 Idea: Use code-coverage as proof-of-work in fuzzing
 Fuzzing always takes input data -> produce code-coverage

7

Proof-of-Work tailored for Fuzzing
Proof of Fuzzing Work?
 Hash code-coverage information into a single SHA512 string
 “execution hash”, use it as fingerprint
 SHA512 of code coverage information

Steps
 1. Control server randomly picks a seed number and initial fuzzing input
 2. Control server pre-calculate a single “execution hash”
 3. Control server challenge a node to find the same seed number as an answer
 range of seed number and fuzzing input is given

 4. Node exhaustively search possible seed numbers
 Finding seed number is guaranteed if all numbers are tried
 Control server verify result in O(1) time/memory complexity

8

PoFW Overview

9

Face two problems in “execution hash”: Hash collision, Non-determinism

Challenge in PoFW design
Hash Collision
 Different input, but same code coverage
 Depends on “complexity” of target application
 Need evaluation

Non-Determinism
 Same input but different code coverage
 Also depends on “complexity” of target application
 Need evaluation

PoFW needs
 Low collision rate
 Low non-determinism rate

10

Evaluation – PoFW Hash Collision

11

Evaluation – PoFW Nondeterminism

12

Evaluation – Cheat Prevention (simulation)

13

Solution: make system more beneficial to honest users!

Deployment & Evaluation

14

Test Deployment (7~800 beta testers)

15

Evaluation Environment
Distributed Servers up to #1,000 cores
 Large-Scale pool evaluation
 Coverage Saturation
 State Synching
 Other performances…

ClusterFuzz
 comparison evaluation
 Used 100 cores

16

Evaluation - Scalability

17

Evaluation – ClusterFuzz Comparison

18

WASM Fuzzer Running Example

19

http://fuzzcoin.gtisc.gatech.edu:8000/

http://fuzzcoin.gtisc.gatech.edu:8000/

Discovered Bugs (as in ClusterFuzz)

20

Other Issues (see paper)
Discovery Stashing Problem
 Collaborator selectively not reporting findings

Performance Optimization
 How to optimize work verification loads?

Implementation Details
 How to integrate fuzzer for Fuzzing@Home?

WASM-based fuzzer
 What are the benefits/limitations?

21

Future Work/Ideas..
Utilize Proof-of-Fuzzing-Work for block-chain?
 As in bitcoin PoW which is a lot of electricity waste

Fuzzing + Bitcoin?
 Bitcoin miners find hash collision
 Fuzzcoin miners find errors

Utilize fuzzing to quantify bug-bounty?
 Difficult to find crash -> more rewards for bug-bounty?

22

+

Thank you

23

	Fuzzing@Home: Distributed Fuzzing on Untrusted Heterogeneous Clients�-The 25th International Symposium on Research in Attacks, Intrusions and Defenses (RAID2022)
	Large-Scale Fuzzing
	Background - ClusterFuzz
	Fuzzing@Home - Motivation
	���Introduction & Design�
	Fuzzing@Home Overview
	Fuzzing@Home – Security Problem
	Fuzzing@Home – Security Problem
	Proof-of-Work tailored for Fuzzing
	PoFW Overview
	Challenge in PoFW design
	Evaluation – PoFW Hash Collision
	Evaluation – PoFW Nondeterminism
	Evaluation – Cheat Prevention (simulation)
	����� Deployment & Evaluation�
	Test Deployment (7~800 beta testers)
	Evaluation Environment
	Evaluation - Scalability
	Evaluation – ClusterFuzz Comparison
	WASM Fuzzer Running Example
	Discovered Bugs (as in ClusterFuzz)
	Other Issues (see paper)
	Future Work/Ideas..
	슬라이드 번호 24

