
Preventing Use-After-Free 
Attacks with Fast Forward 

Allocation
Brian Wickman,1 Hong Hu,2 Insu Yun,3 Daehee Jang,3 JungWon Lim,3

Sanidhya Kashyap,4 Taesoo Kim3

1GTRI 2Penn State 3Georgia Tech 4EPFL



Use After Free

• A problem in memory unsafe 
languages like C

• Occurs when a program accesses 
memory it has previously marked 
as unused (free)

• If attackers can control this freed 
memory, normal program 
execution can be subverted

p = malloc(1);
*p = 1;
if (*p == 1) {

...
free(p); 

}
...
...
...
if (*p == 2)

...

p

p 1

p 1

p ?



Attacking UAF

• Allocation

• Use

• Free

• Re-assignment
• Most allocators reuse p’s 

slot for q

• Use

• Use-after-free

p = malloc(8);
*p = 1;
if (*p == 1) {

...
free(p); 

}
...
q = malloc(8);
*q = ReadNet();
if (*p == 2)

...

p

p 1

p 1

p 1 q

p 2 q

p 2 q



Still a Problem Despite Our Best Efforts

• Pointer invalidation – find and disable dangling pointers at runtime
• Reference counting

• Garbage collection inspired searching

• UAF detection – compiler injected runtime checks

• Allocation randomization – don’t reuse addresses … probably
• Hopefully the attacker’s target doesn’t get reassigned too quickly

• Restricted reuse

• Page-per-allocation – immediately unmap VAs upon free

• None are widely adopted



(Re)Introducing One Time Allocation

• What if we just never* re-use VAs?
• Doesn’t remove the UAF bug

• Does makes it unexploitable

• The naïve and simplest approach
• No expensive tracking

• No custom compilers

• Previously thought impractical
• We needed 64-bit address space

• What about CPU overhead?

• Won’t memory be wasted?

p = malloc(8);
*p = 1;
if (*p == 1) {

...
free(p); 

}
...
q = malloc(8);
*q = ReadNet();
assert(p != q);
if (*p == 2)

...

p

p 1

p 1

q

2 q

p ?



Take 1 - Forward Continuous malloc

• Simple bump pointer allocator

• Address space fragmentation

• Small long-lived allocations prevent 
releasing pages

• Exhausts VMAs

• This is what early objections to OTA 
warned about

• Key lesson learned – Use batch 
page release to decrease VMA and 
CPU usage albeit for an increase in 
memory consumption



Take 2 - Forward Binning malloc

• Fit allocations into fixed sized buckets

• Put allocations of the same size onto the same pages

• Reduces VMA pressure. Long lived allocations more likely to live 
together

• Larger allocations round up to page boundary

• Potentially significant memory waste



Take 3 - FFmalloc – The best of both

From FCmalloc

• Allocations > 2048 bytes

• Processor required alignment 
only – minimize allocation waste

• Tunable “consecutive pages 
before release” parameter to 
control CPU vs memory 
consumption

From FBmalloc

• Smaller allocations grouped into 
fixed sized buckets

• Long lived small allocations don’t 
block page release

• Small allocations never cross 
page boundaries



It’s Effective



Minimal Single Thread CPU Overhead

0

10

20

30

40

50

60

SPEC CPU runtime GeoMean

%
 s

lo
w

er
 t

h
an

 g
lib

c

FFmalloc FreeGuard pSweeper MarkUs CRCount Oscar DangSan DangNull

• Contrary to intuition, one-time-
allocation can perform well.

• FFmalloc out-performed seven 
previous UAF defense proposals 
on SPEC benchmarks 

• Added only 2.3% overhead to 
SPEC benchmarks (geometric 
mean)



Low Multi-thread CPU Overhead

-20

0

20

40

60

80

100

1 Core 2 Cores 4 Cores 8 Cores 16 Cores 32 Cores 64 Cores

%
 s

lo
w

er
 (

fa
st

er
) 

th
an

 g
lib

c

FFmalloc FreeGuard MarkUs

• On PARSEC, FFmalloc added 22% 
overhead versus 43% for MarkUs
or 1.7% for FreeGuard

• mmap-sem lock in the Linux 
kernel constrains FFmalloc
• m(un)map calls on parallel threads

get serialized



Moderate Memory Overhead

0

20

40

60

80

100

120

140

160

SPEC CPU memory GeoMean

M
ax

 R
SS

 %
 in

cr
ea

se
 o

ve
r 

gl
ib

c

FFmalloc FreeGuard pSweeper MarkUs CRCount Oscar DangSan DangNull

• FFmalloc is neither the best nor 
worst in terms of imposed 
memory overhead

• FFmalloc could release pages 
more aggressively at the cost of 
additional CPU usage.



Nginx Load Testing

• Comparable throughput 
(requests/second serviced) to 
glibc on an Ngnix webserver

• Memory utilization was high at 
5.24x glibc but comparable to 
FreeGuard and much better than 
MarkUs



Contrasts with Related Work

• Probabilistic reuse may be of limited value
• Multiple chances if bug is network visible

• Hard to reason about

• Pointer tracking generally too expensive

• Does not require recompiling

• FFmalloc has a hard guarantee that is easy to reason about



Summary

• UAF bugs are still significant. 
• Vulnerable code bases include operating systems, browsers, and even the 

runtimes of many memory safe languages

• One-time-allocation is effective and simple to implement

• Concerns about OTA CPU and memory inefficiency can be addressed 
through smart design



Contact 
Information

FFmalloc published at 
https://github.com/bwickman97/ffmalloc

Questions? 
brian.wickman@gtri.gatech.edu (please 
include “ffmalloc” in your subject line)

https://github.com/bwickman97/ffmalloc
mailto:Brian.wickman@gtri.gatech.edu

