
Automatic Techniques to
Systematically Discover New
Heap Exploitation Primitives

Insu Yun, Dhaval Kapil, and Taesoo Kim

Georgia Institute of Technology

1

Heap vulnerabilities are the most common,
yet serious security issues.

From “Killing Uninitialized Memory: Protecting the OS Without Destroying Performance”,
Joe Bialek and Shayne Hiet-Block, CppCon 2019

% 𝑜𝑓 ℎ𝑒𝑎𝑝 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

=
233
604 = 39%

2

Heap exploitation techniques (HETs) are preferable
methods to exploit heap vulnerabilities
• Abuse underlying allocator to achieve more powerful primitives (e.g.,

arbitrary write) for control hijacking
• Application-agnostic: rely on only underlying allocators
• Powerful: e.g., off-by-one null byte overflow à arbitrary code execution

• Used to compromise (in 2019)

3

Example: unlink() in ptmalloc2

fd bkChunk fd bkChunk fd bkChunk

unlink(): P->fd->bk = P->bk
P->bk->fd = P->fd

4

Example: unlink() in ptmalloc2

fd bkChunk fd bkChunk fd bkChunk

unlink(): P->fd->bk = P->bk
P->bk->fd = P->fd

5

Example: Unsafe unlink() in the presence of
memory corruptions (e.g., overflow)

fd bkChunk addr evil

Object fptr

Chunk

unlink(): P->fd->bk = P->bk
=> fptr = evil

fd bkChunkfd bk

6

Security checks are introduced in the
allocator to prevent such exploitations
unlink(): assert(P->fd->bk == P);

P->fd->bk = P->bk

This check is still bypassable,
but it makes HET more complicated

7

Researchers have been studied reusable HETs
to handle such complexities

All analyses are manual, ad-hoc, and allocator-specific!

8

Problem 1: Existing analyses are highly biased
to certain allocators

tcmalloc

jemalloc

DieHarder

mimalloc

mesh

scudo

Freeguard

ptmalloc2 (Linux allocator)

9

ptmalloc2 (Linux allocator)

Problem2: A manual re-analysis is required in
the changes of an allocator’s implementation

A new feature:
thread-local cache (tcache)

Question: How to find HETs automatically?

10

Our key idea: ArcHeap autonomously explore spaces
similar to fuzzing!

HET“ ”

11

Technical challenges

HET

Large search space

Lack of an efficient
way to evaluate HETs

12

Technical challenges

HET

Large search space

Lack of an efficient
way to evaluate HETs

13

Search space consisting of heap actions is enormous

malloc(sz)
Allocation

free(p)
Deallocation

p[i]=v
Heap write

buf[i]=v
Buffer write

p[ioverflow]=v
Overflow

free(pfreed)
Double free

pfreed[i]=v
Write-after-free

free(pnon-heap)
Arbitrary free

Legitimate actions

Buggy actions

264 size(p) x 264

Search space can be reduced using model-based search
based on common designs of allocators!

14

Common design 1: Binning

• Specially managing chunks in different size groups
• Small chunks: Performance is more important
• Large chunks: Memory footprint is more important

• e.g., ptmalloc
• fast bin (< 128 bytes): no merging in free chunks
• small bin (< 1024 bytes): merging is enabled

• Sampling a size uniformly in the 264 space è P(fast bin) = 2-57

15

ArcHeap selects an allocation size aware of binning

• Sampling in exponentially distant size groups

• ArcHeap partitions an allocation size into four groups:
(20, 25], (25, 210], (210, 215], and (215, 220]

• Then, it selects a group and then selects a size in the group uniformly
• e.g., P(fast bin) > P(selecting a first group) = ¼

16

Other common designs: Cardinal data and
In-place metadata
• Cardinal data: Metadata in a chunk are either sizes or pointers, but not

other random values

• In-place metadata: Allocators place metadata near its chunk’s start or
end for locality

17

Cardinal data and In-place metadata reduce
search space in data writes

p[i]=v
Heap write

Size

Pointer

0xdeadbeef

Random size
Other chunk’s size
Other chunk
Buffer
Container
An array that stores chunks

1337-8 ~ 8

18

Technical challenges

HET

Large search space

Lack of an efficient
way to evaluate HETs

19

Automatically synthesizing full exploits is
inappropriate in evaluating HETs
• Difficult: e.g., In the DAPRA CGC competition, only one heap bug was

successfully exploited by the-state-of-the-art systems

• Inefficient: Takes a few seconds, minutes, or even hours for one try

• Application-dependent: A HET, which is not useful in a certain
application, may be useful in general

20

Our idea: Evaluating impacts of exploitations (i.e., detecting
broken invariants that have security implications)

1. Allocated memory should not be overlapped with pre-allocated
memory
• Overlapping chunks: Can corrupt other chunk’s data
• Arbitrary chunks: Can corrupt global data

2. An allocator should not modify memory, which is not under its
control (i.e., heap)
• Arbitrary writes
• Restricted writes

Easy to detect: Check
this at every allocation

How about this?
(NOTE: should be efficient)

21

Shadow memory can detect arbitrary writes
and restricted writes
• Maintain external consistency • Check divergence

container[i] = malloc(sz)
containershadow[i] = malloc(sz)

Allocation

buf[i]=v

Buffer write

bufshadow[i]=v

malloc(sz)
Allocation

free(p)
Deallocation

p[i]=v
Heap write buf[i]=v

Buffer write

CHECK: equal(container, containershadow)
equal(buf, bufshadow)

Divergence can only happen
in the internal of allocators

22

ArcHeap provides a minimized PoC code for
further analysis
• Proof-of-Concept code: Converting actions into C code
• Trivial, because they have one-to-one mapping

• Minimize the PoC code using delta-debugging
• Idea: Eliminate an action, which is not necessary for triggering the impact of

exploitations
• Details can be found in our paper

23

Evaluation questions

1. How effective is ArcHeap in finding new HETs, compared to the
existing tool, HeapHopper?

2. How general is ArcHeap’s approach?

24

ArcHeap discovered five new HETs in ptmalloc2,
which cannot be found by HeapHopper
• Unsorted bin into stack: Write-after-free à Arbitrary chunk
• Requires fewer steps (5 steps vs 9 steps)

• House of unsorted einherjar: Off-by-one write à Arbitrary chunk
• No require heap address leak

• Unaligned double free: Double free à Overlapping chunk
• First HET targets small bin chunks, which have more checks than fast bin

• Overlapping chunks using a small bin : Overflow à Overlapping chunk

• Fast bin into other bin: Write-after-free à Arbitrary chunk

All HETS cannot be discovered by HeapHopper because of its
scalability issue (i.e., symbolic execution + model checking)

25

ArcHeap is generic enough to test various
allocators
• Tested 10 different allocators
• Cannot find HETs in LLVM Scudo, FreeGuard, and Guarder, which are “secure

allocators”

Works for ptmalloc2-
unrelated allocators

Even found HETs in
“secure” allocators

26

Case study1: Double free à Overlapping
chunks in DieHarder and mimalloc-secure

// [PRE-CONDITION]
// lsz : large size (> 64 KB)
// xlsz: more large size (>= lsz + 4KB)
// [BUG] double free
// [POST-CONDITION]
// p2 == malloc(lsz);
void* p0 = malloc(lsz);
free(p0);
void* p1 = malloc(xlsz);

// [BUG] free 'p0' again
free(p0);

void* p2 = malloc(lsz);
free(p1);

assert(p2 == malloc(lsz));

Double free large chunk è
Overlapping chunk

Same thing happens in both
DieHarder and mimalloc

27

Interestingly, these issues are irrelevant

Me: Is mimalloc
related to DieHarder?

Mimalloc developer:
No!

free(plarge)

DieHarder

mimalloc

unmap(plarge)

check(plarge)

No
check!

Wrong
check!

28

Our PoC has been added in a mimalloc’s
regression test

29

Case study 2: Overflow à Arbitrary chunk in
dlmalloc-2.8.6
• dlmalloc: ancestor of ptmalloc2 but has been diverged after its fork

void* p0 = malloc(sz);
void* p1 = malloc(xlsz);
void* p2 = malloc(lsz);
void* p3 = malloc(sz);

// [BUG] overflowing p3 to overwrite top chunk
struct malloc_chunk *tc = raw_to_chunk(p3 + chunk_size(sz));
tc->size = 0;

void* p4 = malloc(fsz);
void* p5 = malloc(dst - p4 - chunk_size(fsz) \

- offsetof(struct malloc_chunk, fd));
assert(dst == malloc(sz));

Looks complicated…

30

Its root cause is more complicated!
// Make top chunk available
void* p0 = malloc(sz);
// Set mr.mflags |= USE_NONCONTIGUOUS_BIT
void* p1 = malloc(xlsz);
// Current top size < lsz (4096) and no available bins, so dlmalloc calls sys_alloc
// Instead of using sbrk(), it inserts current top chunk into treebins
// and set mmapped area as a new top chunk because of the non-continous bit
void* p2 = malloc(lsz);
void* p3 = malloc(sz);
// [BUG] overflowing p3 to overwrite treebins
struct malloc_chunk *tc = raw_to_chunk(p3 + chunk_size(sz));
tc->size = 0;
// dlmalloc believes that treebins (i.e., top chunk) has enough size
// However, underflow happens because its size is actually zero
void* p4 = malloc(fsz);
// Similar to house-of-force, we can allocate an arbitrary chunk
void* p5 = malloc(dst - p4 - chunk_size(fsz) \

- offsetof(struct malloc_chunk, fd));
assert(dst == malloc(sz));

Easy to miss by manual analysis
è Shows benefits of
automated methods!

31

Discussion & Limitations

• Incompleteness: Unlike HeapHopper that is complete under its model
• But HeapHopper’s model cannot be complete because of its scalability issue

• Overfitting: Our strategy might not work for certain allocators
• In practice, our model is quite generic: found HETs in seven allocators out of

ten except for secure allocators

• Scope: ArcHeap only finds HETs and does not generate end-to-end
exploits for an application

32

Conclusion

• Automatic ways to discover HETs
• Model-based search based on common designs of allocators
• Shadow-memory-based detection

• Five new HETs in ptmalloc2 and several ones in other allocators
• Including secure allocators, DieHarder and mimalloc secure

• Open source: https://github.com/sslab-gatech/ArcHeap

33

https://github.com/sslab-gatech/ArcHeap

Thank you!

34

