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• Implementation: We implemented the proposed hardware
with realization on FGPA board. We also implemented all
six security applications (§VI).

• Evaluation: We quantitatively evaluated: (1) the perfor-
mance impact of HDFI and the effectiveness of our op-
timization techniques and (2) the performance improvement
delivered to the security mechanisms we implemented (§VII).
The rest of this paper is organized as follows. §II defines

the threat model and the problem scope. §III uses a concrete
example to explain how HDFI works, and discusses the differ-
ences between HDFI and similar work. §IV presents the the
design of HDFI. §V describes the security applications we have
developed. §VI provides some implementation details. §VII
describes the evaluation of HDFI and its security applications.
§VIII analyzes the security guarantee provided by HDFI, its
attack surface, and discusses best practices. §IX discusses the
limitations of our current design and future work. §X concludes
the paper.

II. THREAT MODEL AND ASSUMPTIONS

In this work, we focus on preventing memory corruption
based attacks; therefore we follow the typical threat model
of most related work. That is, we assume that software may
contain one or more memory vulnerabilities that, once triggered
would allow attackers to perform arbitrary memory reads and
writes. We do not limit what attackers would do with this
capability, as there are many different attack vectors given
this capability. As a hardware-based solution, we also do not
limit where the vulnerabilities are: they can be in user-mode
applications, OS kernel, hypervisor, etc. However, we assume
all hardware components are trusted and bug free, so attacks
that exploit hardware vulnerabilities, such as the row hammer
attack [42], are out-of-scope.

Similar to NX-bit, HDFI requires software modifications
to obtain its benefits. This can be done in many ways:
manual modification, compiler-based modification, static binary
rewriting, dynamic binary rewriting, etc. For the example
applications we demonstrated in this paper, we either manually
modified the source or leveraged compiler-based approaches.
However, we must emphasize that this is not a limitation of
HDFI and source code is not always necessary.

III. BACKGROUND AND RELATED WORK

This section provides the background of HDFI and compares
HDFI with related work.

A. Data-flow Integrity
The goal of HDFI is to prevent attackers from exploiting

memory corruption vulnerabilities to tamper/leak sensitive data.
To achieve this goal, we leverage data-flow integrity (DFI) [10].
DFI ensures that the runtime data-flow cannot deviate from the
data-flow graph generated from static analysis. In particular,
DFI assigns an identifier to each write instruction and records
the ID of the last instruction that writes to a memory position;
then at each read instruction, DFI checks whether the ID of
the last writer belongs to the set allowed by static analysis.

Take Example 1. This code snippet contains a buffer overflow
vulnerability at line 6, which allows attackers to use strcpy()
to overwrite the return address saved at line 3 and launch
control-flow hijacking attacks. Such attacks can be prevented
by checking if the return address read at line 8 is defined by
the store instruction at line 3.
1 int main(int argc, const char *argv[]) {
2 char buf[16];
3 strcpy(buf, argv[1]);
4 return 0;
5 }

Example 1: A typical stack buffer overflow example, in RISC-V
assembly, in which HDFI prevented by replacing load and store
instructions with two new load and store instructions (line 3 and
8). strcpy() at line 6 can overflow the return address saved at line 3,
and HDFI can accordingly detect the overflow when it is loaded back
at line 8.

In HDFI, we extend the ISA to perform DFI-style checks
with hardware. Specifically, we leverage memory tagging to
record the last writer of a memory word and provide new
instructions to set and check the tag. However, instead of
trying to fully replicate DFI, which would require supporting
arbitrary tag size, we focus on providing isolation, i.e., using a
one-bit tag to indicate the trustworthiness of the writer. Using
the same example, HDFI can be utilized to prevent the attack
by (1) using a new instruction sdset1 (store and set tag) to
set the tag of memory used to store return address to 1 (line
3); and (2) when loading the return address from memory for
function return, using another instruction ldchk1 (load and
check tag) to check if the memory tag is still 1. Since normal
store instructions (e.g., sd) would set the tag to 0, if attackers
try to overwrite the return address, the ldchk1 instruction would
fail and generate a memory exception.

B. Tag-based Memory Protection
Tag-based memory protection is not new and has been

explored in many previous works. For example, lowRISC [8]
uses a 2-bit tag to specify if a memory address is readable and
writable. Loki [84] also allows developers to specify permission
with a memory address, but is more flexible, as the permission is
related to the current protection domain. The problem with these
approaches (including the Mondriaan protection model [79]) is
that, although the objects (memory addresses) are fine-grained,
the subjects are still coarse-grained—the access permissions are
applied to the whole program or the whole protection domain.
However, the subjects are individual instructions in HDFI.

An alternative approach is to associate the access permission
with pointers instead of memory locations. For example,
Watchdog [51] and the application data integrity (ADI) [57]
mechanism on SPARC M7 processors allow a program to
associate memory addresses and pointers with versions (tags)
and require that when accessing the memory the version of
the pointer must match the version of the memory. The tricky
part of this approach is how to maintain the tag of a pointer,
because every pointer should have two tags: one indicating the
tag of the target memory, and the other indicating the tag of
the memory where the pointer is stored. Without this, attackers
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then at each read instruction, DFI checks whether the ID of
the last writer belongs to the set allowed by static analysis.

Take Example 1. This code snippet contains a buffer overflow
vulnerability at line 6, which allows attackers to use strcpy()
to overwrite the return address saved at line 3 and launch
control-flow hijacking attacks. Such attacks can be prevented
by checking if the return address read at line 8 is defined by
the store instruction at line 3.
1 main:
2 add sp,sp,-32
3 sd ra,24(sp)
4 ld a1,8(a1) ; argv[1]

5 mv a0,sp ; char buff[16]

6 call strcpy ; strcpy(buff, argv[1])

7 li a0,0
8 ld ra,24(sp)
9 add sp,sp,32

10 jr ra ; return

Example 1: A typical stack buffer overflow example, in RISC-V
assembly, in which HDFI prevented by replacing load and store
instructions with two new load and store instructions (line 3 and
8). strcpy() at line 6 can overflow the return address saved at line 3,
and HDFI can accordingly detect the overflow when it is loaded back
at line 8.

In HDFI, we extend the ISA to perform DFI-style checks
with hardware. Specifically, we leverage memory tagging to
record the last writer of a memory word and provide new
instructions to set and check the tag. However, instead of
trying to fully replicate DFI, which would require supporting
arbitrary tag size, we focus on providing isolation, i.e., using a
one-bit tag to indicate the trustworthiness of the writer. Using
the same example, HDFI can be utilized to prevent the attack
by (1) using a new instruction sdset1 (store and set tag) to
set the tag of memory used to store return address to 1 (line
3); and (2) when loading the return address from memory for
function return, using another instruction ldchk1 (load and
check tag) to check if the memory tag is still 1. Since normal
store instructions (e.g., sd) would set the tag to 0, if attackers
try to overwrite the return address, the ldchk1 instruction would
fail and generate a memory exception.

B. Tag-based Memory Protection

Tag-based memory protection is not new and has been
explored in many previous works. For example, lowRISC [8]
uses a 2-bit tag to specify if a memory address is readable and
writable. Loki [84] also allows developers to specify permission
with a memory address, but is more flexible, as the permission is
related to the current protection domain. The problem with these
approaches (including the Mondriaan protection model [79]) is
that, although the objects (memory addresses) are fine-grained,
the subjects are still coarse-grained—the access permissions are
applied to the whole program or the whole protection domain.
However, the subjects are individual instructions in HDFI.

An alternative approach is to associate the access permission
with pointers instead of memory locations. For example,
Watchdog [51] and the application data integrity (ADI) [57]
mechanism on SPARC M7 processors allow a program to
associate memory addresses and pointers with versions (tags)
and require that when accessing the memory the version of
the pointer must match the version of the memory. The tricky
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by checking if the return address read at line 8 is defined by
the store instruction at line 3.
1 main:
2 add sp,sp,-32
3 sd ra,24(sp)
4 ld a1,8(a1) ; argv[1]

5 mv a0,sp ; char buff[16]

6 call strcpy ; strcpy(buff, argv[1])

7 li a0,0
8 ld ra,24(sp)
9 add sp,sp,32

10 jr ra ; return

Example 1: A typical stack buffer overflow example, in RISC-V
assembly, in which HDFI prevented by replacing load and store
instructions with two new load and store instructions (line 3 and
8). strcpy() at line 6 can overflow the return address saved at line 3,
and HDFI can accordingly detect the overflow when it is loaded back
at line 8.

In HDFI, we extend the ISA to perform DFI-style checks
with hardware. Specifically, we leverage memory tagging to
record the last writer of a memory word and provide new
instructions to set and check the tag. However, instead of
trying to fully replicate DFI, which would require supporting
arbitrary tag size, we focus on providing isolation, i.e., using a
one-bit tag to indicate the trustworthiness of the writer. Using
the same example, HDFI can be utilized to prevent the attack
by (1) using a new instruction sdset1 (store and set tag) to
set the tag of memory used to store return address to 1 (line
3); and (2) when loading the return address from memory for
function return, using another instruction ldchk1 (load and
check tag) to check if the memory tag is still 1. Since normal
store instructions (e.g., sd) would set the tag to 0, if attackers
try to overwrite the return address, the ldchk1 instruction would
fail and generate a memory exception.

B. Tag-based Memory Protection

Tag-based memory protection is not new and has been
explored in many previous works. For example, lowRISC [8]
uses a 2-bit tag to specify if a memory address is readable and
writable. Loki [84] also allows developers to specify permission
with a memory address, but is more flexible, as the permission is
related to the current protection domain. The problem with these
approaches (including the Mondriaan protection model [79]) is
that, although the objects (memory addresses) are fine-grained,
the subjects are still coarse-grained—the access permissions are
applied to the whole program or the whole protection domain.
However, the subjects are individual instructions in HDFI.

An alternative approach is to associate the access permission
with pointers instead of memory locations. For example,
Watchdog [51] and the application data integrity (ADI) [57]
mechanism on SPARC M7 processors allow a program to
associate memory addresses and pointers with versions (tags)
and require that when accessing the memory the version of
the pointer must match the version of the memory. The tricky
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• Implementation: We implemented the proposed hardware
with realization on FGPA board. We also implemented all
six security applications (§VI).

• Evaluation: We quantitatively evaluated: (1) the perfor-
mance impact of HDFI and the effectiveness of our op-
timization techniques and (2) the performance improvement
delivered to the security mechanisms we implemented (§VII).
The rest of this paper is organized as follows. §II defines

the threat model and the problem scope. §III uses a concrete
example to explain how HDFI works, and discusses the differ-
ences between HDFI and similar work. §IV presents the the
design of HDFI. §V describes the security applications we have
developed. §VI provides some implementation details. §VII
describes the evaluation of HDFI and its security applications.
§VIII analyzes the security guarantee provided by HDFI, its
attack surface, and discusses best practices. §IX discusses the
limitations of our current design and future work. §X concludes
the paper.

II. THREAT MODEL AND ASSUMPTIONS

In this work, we focus on preventing memory corruption
based attacks; therefore we follow the typical threat model
of most related work. That is, we assume that software may
contain one or more memory vulnerabilities that, once triggered
would allow attackers to perform arbitrary memory reads and
writes. We do not limit what attackers would do with this
capability, as there are many different attack vectors given
this capability. As a hardware-based solution, we also do not
limit where the vulnerabilities are: they can be in user-mode
applications, OS kernel, hypervisor, etc. However, we assume
all hardware components are trusted and bug free, so attacks
that exploit hardware vulnerabilities, such as the row hammer
attack [42], are out-of-scope.

Similar to NX-bit, HDFI requires software modifications
to obtain its benefits. This can be done in many ways:
manual modification, compiler-based modification, static binary
rewriting, dynamic binary rewriting, etc. For the example
applications we demonstrated in this paper, we either manually
modified the source or leveraged compiler-based approaches.
However, we must emphasize that this is not a limitation of
HDFI and source code is not always necessary.

III. BACKGROUND AND RELATED WORK

This section provides the background of HDFI and compares
HDFI with related work.

A. Data-flow Integrity
The goal of HDFI is to prevent attackers from exploiting

memory corruption vulnerabilities to tamper/leak sensitive data.
To achieve this goal, we leverage data-flow integrity (DFI) [10].
DFI ensures that the runtime data-flow cannot deviate from the
data-flow graph generated from static analysis. In particular,
DFI assigns an identifier to each write instruction and records
the ID of the last instruction that writes to a memory position;
then at each read instruction, DFI checks whether the ID of
the last writer belongs to the set allowed by static analysis.

Take Example 1. This code snippet contains a buffer overflow
vulnerability at line 6, which allows attackers to use strcpy()
to overwrite the return address saved at line 3 and launch
control-flow hijacking attacks. Such attacks can be prevented
by checking if the return address read at line 8 is defined by
the store instruction at line 3.
1 int main(int argc, const char *argv[]) {
2 char buf[16];
3 strcpy(buf, argv[1]);
4 return 0;
5 }

Example 1: A typical stack buffer overflow example, in RISC-V
assembly, in which HDFI prevented by replacing load and store
instructions with two new load and store instructions (line 3 and
8). strcpy() at line 6 can overflow the return address saved at line 3,
and HDFI can accordingly detect the overflow when it is loaded back
at line 8.

In HDFI, we extend the ISA to perform DFI-style checks
with hardware. Specifically, we leverage memory tagging to
record the last writer of a memory word and provide new
instructions to set and check the tag. However, instead of
trying to fully replicate DFI, which would require supporting
arbitrary tag size, we focus on providing isolation, i.e., using a
one-bit tag to indicate the trustworthiness of the writer. Using
the same example, HDFI can be utilized to prevent the attack
by (1) using a new instruction sdset1 (store and set tag) to
set the tag of memory used to store return address to 1 (line
3); and (2) when loading the return address from memory for
function return, using another instruction ldchk1 (load and
check tag) to check if the memory tag is still 1. Since normal
store instructions (e.g., sd) would set the tag to 0, if attackers
try to overwrite the return address, the ldchk1 instruction would
fail and generate a memory exception.

B. Tag-based Memory Protection
Tag-based memory protection is not new and has been

explored in many previous works. For example, lowRISC [8]
uses a 2-bit tag to specify if a memory address is readable and
writable. Loki [84] also allows developers to specify permission
with a memory address, but is more flexible, as the permission is
related to the current protection domain. The problem with these
approaches (including the Mondriaan protection model [79]) is
that, although the objects (memory addresses) are fine-grained,
the subjects are still coarse-grained—the access permissions are
applied to the whole program or the whole protection domain.
However, the subjects are individual instructions in HDFI.

An alternative approach is to associate the access permission
with pointers instead of memory locations. For example,
Watchdog [51] and the application data integrity (ADI) [57]
mechanism on SPARC M7 processors allow a program to
associate memory addresses and pointers with versions (tags)
and require that when accessing the memory the version of
the pointer must match the version of the memory. The tricky
part of this approach is how to maintain the tag of a pointer,
because every pointer should have two tags: one indicating the
tag of the target memory, and the other indicating the tag of
the memory where the pointer is stored. Without this, attackers
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• Implementation: We implemented the proposed hardware
with realization on FGPA board. We also implemented all
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• Evaluation: We quantitatively evaluated: (1) the perfor-
mance impact of HDFI and the effectiveness of our op-
timization techniques and (2) the performance improvement
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The rest of this paper is organized as follows. §II defines
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example to explain how HDFI works, and discusses the differ-
ences between HDFI and similar work. §IV presents the the
design of HDFI. §V describes the security applications we have
developed. §VI provides some implementation details. §VII
describes the evaluation of HDFI and its security applications.
§VIII analyzes the security guarantee provided by HDFI, its
attack surface, and discusses best practices. §IX discusses the
limitations of our current design and future work. §X concludes
the paper.

II. THREAT MODEL AND ASSUMPTIONS

In this work, we focus on preventing memory corruption
based attacks; therefore we follow the typical threat model
of most related work. That is, we assume that software may
contain one or more memory vulnerabilities that, once triggered
would allow attackers to perform arbitrary memory reads and
writes. We do not limit what attackers would do with this
capability, as there are many different attack vectors given
this capability. As a hardware-based solution, we also do not
limit where the vulnerabilities are: they can be in user-mode
applications, OS kernel, hypervisor, etc. However, we assume
all hardware components are trusted and bug free, so attacks
that exploit hardware vulnerabilities, such as the row hammer
attack [42], are out-of-scope.

Similar to NX-bit, HDFI requires software modifications
to obtain its benefits. This can be done in many ways:
manual modification, compiler-based modification, static binary
rewriting, dynamic binary rewriting, etc. For the example
applications we demonstrated in this paper, we either manually
modified the source or leveraged compiler-based approaches.
However, we must emphasize that this is not a limitation of
HDFI and source code is not always necessary.

III. BACKGROUND AND RELATED WORK

This section provides the background of HDFI and compares
HDFI with related work.

A. Data-flow Integrity
The goal of HDFI is to prevent attackers from exploiting

memory corruption vulnerabilities to tamper/leak sensitive data.
To achieve this goal, we leverage data-flow integrity (DFI) [10].
DFI ensures that the runtime data-flow cannot deviate from the
data-flow graph generated from static analysis. In particular,
DFI assigns an identifier to each write instruction and records
the ID of the last instruction that writes to a memory position;
then at each read instruction, DFI checks whether the ID of
the last writer belongs to the set allowed by static analysis.

Take Example 1. This code snippet contains a buffer overflow
vulnerability at line 6, which allows attackers to use strcpy()
to overwrite the return address saved at line 3 and launch
control-flow hijacking attacks. Such attacks can be prevented
by checking if the return address read at line 8 is defined by
the store instruction at line 3.
1 main:
2 add sp,sp,-32
3 sd ra,24(sp)
4 ld a1,8(a1) ; argv[1]

5 mv a0,sp ; char buff[16]

6 call strcpy ; strcpy(buff, argv[1])

7 li a0,0
8 ld ra,24(sp)
9 add sp,sp,32

10 jr ra ; return

Example 1: A typical stack buffer overflow example, in RISC-V
assembly, in which HDFI prevented by replacing load and store
instructions with two new load and store instructions (line 3 and
8). strcpy() at line 6 can overflow the return address saved at line 3,
and HDFI can accordingly detect the overflow when it is loaded back
at line 8.

In HDFI, we extend the ISA to perform DFI-style checks
with hardware. Specifically, we leverage memory tagging to
record the last writer of a memory word and provide new
instructions to set and check the tag. However, instead of
trying to fully replicate DFI, which would require supporting
arbitrary tag size, we focus on providing isolation, i.e., using a
one-bit tag to indicate the trustworthiness of the writer. Using
the same example, HDFI can be utilized to prevent the attack
by (1) using a new instruction sdset1 (store and set tag) to
set the tag of memory used to store return address to 1 (line
3); and (2) when loading the return address from memory for
function return, using another instruction ldchk1 (load and
check tag) to check if the memory tag is still 1. Since normal
store instructions (e.g., sd) would set the tag to 0, if attackers
try to overwrite the return address, the ldchk1 instruction would
fail and generate a memory exception.

B. Tag-based Memory Protection

Tag-based memory protection is not new and has been
explored in many previous works. For example, lowRISC [8]
uses a 2-bit tag to specify if a memory address is readable and
writable. Loki [84] also allows developers to specify permission
with a memory address, but is more flexible, as the permission is
related to the current protection domain. The problem with these
approaches (including the Mondriaan protection model [79]) is
that, although the objects (memory addresses) are fine-grained,
the subjects are still coarse-grained—the access permissions are
applied to the whole program or the whole protection domain.
However, the subjects are individual instructions in HDFI.

An alternative approach is to associate the access permission
with pointers instead of memory locations. For example,
Watchdog [51] and the application data integrity (ADI) [57]
mechanism on SPARC M7 processors allow a program to
associate memory addresses and pointers with versions (tags)
and require that when accessing the memory the version of
the pointer must match the version of the memory. The tricky
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• Implementation: We implemented the proposed hardware
with realization on FGPA board. We also implemented all
six security applications (§VI).

• Evaluation: We quantitatively evaluated: (1) the perfor-
mance impact of HDFI and the effectiveness of our op-
timization techniques and (2) the performance improvement
delivered to the security mechanisms we implemented (§VII).
The rest of this paper is organized as follows. §II defines

the threat model and the problem scope. §III uses a concrete
example to explain how HDFI works, and discusses the differ-
ences between HDFI and similar work. §IV presents the the
design of HDFI. §V describes the security applications we have
developed. §VI provides some implementation details. §VII
describes the evaluation of HDFI and its security applications.
§VIII analyzes the security guarantee provided by HDFI, its
attack surface, and discusses best practices. §IX discusses the
limitations of our current design and future work. §X concludes
the paper.

II. THREAT MODEL AND ASSUMPTIONS

In this work, we focus on preventing memory corruption
based attacks; therefore we follow the typical threat model
of most related work. That is, we assume that software may
contain one or more memory vulnerabilities that, once triggered
would allow attackers to perform arbitrary memory reads and
writes. We do not limit what attackers would do with this
capability, as there are many different attack vectors given
this capability. As a hardware-based solution, we also do not
limit where the vulnerabilities are: they can be in user-mode
applications, OS kernel, hypervisor, etc. However, we assume
all hardware components are trusted and bug free, so attacks
that exploit hardware vulnerabilities, such as the row hammer
attack [42], are out-of-scope.

Similar to NX-bit, HDFI requires software modifications
to obtain its benefits. This can be done in many ways:
manual modification, compiler-based modification, static binary
rewriting, dynamic binary rewriting, etc. For the example
applications we demonstrated in this paper, we either manually
modified the source or leveraged compiler-based approaches.
However, we must emphasize that this is not a limitation of
HDFI and source code is not always necessary.

III. BACKGROUND AND RELATED WORK

This section provides the background of HDFI and compares
HDFI with related work.

A. Data-flow Integrity
The goal of HDFI is to prevent attackers from exploiting

memory corruption vulnerabilities to tamper/leak sensitive data.
To achieve this goal, we leverage data-flow integrity (DFI) [10].
DFI ensures that the runtime data-flow cannot deviate from the
data-flow graph generated from static analysis. In particular,
DFI assigns an identifier to each write instruction and records
the ID of the last instruction that writes to a memory position;
then at each read instruction, DFI checks whether the ID of
the last writer belongs to the set allowed by static analysis.

Take Example 1. This code snippet contains a buffer overflow
vulnerability at line 6, which allows attackers to use strcpy()
to overwrite the return address saved at line 3 and launch
control-flow hijacking attacks. Such attacks can be prevented
by checking if the return address read at line 8 is defined by
the store instruction at line 3.
1 int main(int argc, const char *argv[]) {
2 char buf[16];
3 strcpy(buf, argv[1]);
4 return 0;
5 }

Example 1: A typical stack buffer overflow example, in RISC-V
assembly, in which HDFI prevented by replacing load and store
instructions with two new load and store instructions (line 3 and
8). strcpy() at line 6 can overflow the return address saved at line 3,
and HDFI can accordingly detect the overflow when it is loaded back
at line 8.

In HDFI, we extend the ISA to perform DFI-style checks
with hardware. Specifically, we leverage memory tagging to
record the last writer of a memory word and provide new
instructions to set and check the tag. However, instead of
trying to fully replicate DFI, which would require supporting
arbitrary tag size, we focus on providing isolation, i.e., using a
one-bit tag to indicate the trustworthiness of the writer. Using
the same example, HDFI can be utilized to prevent the attack
by (1) using a new instruction sdset1 (store and set tag) to
set the tag of memory used to store return address to 1 (line
3); and (2) when loading the return address from memory for
function return, using another instruction ldchk1 (load and
check tag) to check if the memory tag is still 1. Since normal
store instructions (e.g., sd) would set the tag to 0, if attackers
try to overwrite the return address, the ldchk1 instruction would
fail and generate a memory exception.

B. Tag-based Memory Protection
Tag-based memory protection is not new and has been

explored in many previous works. For example, lowRISC [8]
uses a 2-bit tag to specify if a memory address is readable and
writable. Loki [84] also allows developers to specify permission
with a memory address, but is more flexible, as the permission is
related to the current protection domain. The problem with these
approaches (including the Mondriaan protection model [79]) is
that, although the objects (memory addresses) are fine-grained,
the subjects are still coarse-grained—the access permissions are
applied to the whole program or the whole protection domain.
However, the subjects are individual instructions in HDFI.

An alternative approach is to associate the access permission
with pointers instead of memory locations. For example,
Watchdog [51] and the application data integrity (ADI) [57]
mechanism on SPARC M7 processors allow a program to
associate memory addresses and pointers with versions (tags)
and require that when accessing the memory the version of
the pointer must match the version of the memory. The tricky
part of this approach is how to maintain the tag of a pointer,
because every pointer should have two tags: one indicating the
tag of the target memory, and the other indicating the tag of
the memory where the pointer is stored. Without this, attackers
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• Implementation: We implemented the proposed hardware
with realization on FGPA board. We also implemented all
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mance impact of HDFI and the effectiveness of our op-
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developed. §VI provides some implementation details. §VII
describes the evaluation of HDFI and its security applications.
§VIII analyzes the security guarantee provided by HDFI, its
attack surface, and discusses best practices. §IX discusses the
limitations of our current design and future work. §X concludes
the paper.

II. THREAT MODEL AND ASSUMPTIONS

In this work, we focus on preventing memory corruption
based attacks; therefore we follow the typical threat model
of most related work. That is, we assume that software may
contain one or more memory vulnerabilities that, once triggered
would allow attackers to perform arbitrary memory reads and
writes. We do not limit what attackers would do with this
capability, as there are many different attack vectors given
this capability. As a hardware-based solution, we also do not
limit where the vulnerabilities are: they can be in user-mode
applications, OS kernel, hypervisor, etc. However, we assume
all hardware components are trusted and bug free, so attacks
that exploit hardware vulnerabilities, such as the row hammer
attack [42], are out-of-scope.

Similar to NX-bit, HDFI requires software modifications
to obtain its benefits. This can be done in many ways:
manual modification, compiler-based modification, static binary
rewriting, dynamic binary rewriting, etc. For the example
applications we demonstrated in this paper, we either manually
modified the source or leveraged compiler-based approaches.
However, we must emphasize that this is not a limitation of
HDFI and source code is not always necessary.

III. BACKGROUND AND RELATED WORK

This section provides the background of HDFI and compares
HDFI with related work.

A. Data-flow Integrity
The goal of HDFI is to prevent attackers from exploiting

memory corruption vulnerabilities to tamper/leak sensitive data.
To achieve this goal, we leverage data-flow integrity (DFI) [10].
DFI ensures that the runtime data-flow cannot deviate from the
data-flow graph generated from static analysis. In particular,
DFI assigns an identifier to each write instruction and records
the ID of the last instruction that writes to a memory position;
then at each read instruction, DFI checks whether the ID of
the last writer belongs to the set allowed by static analysis.

Take Example 1. This code snippet contains a buffer overflow
vulnerability at line 6, which allows attackers to use strcpy()
to overwrite the return address saved at line 3 and launch
control-flow hijacking attacks. Such attacks can be prevented
by checking if the return address read at line 8 is defined by
the store instruction at line 3.
1 main:
2 add sp,sp,-32
3 sd ra,24(sp)
4 ld a1,8(a1) ; argv[1]

5 mv a0,sp ; char buff[16]

6 call strcpy ; strcpy(buff, argv[1])

7 li a0,0
8 ld ra,24(sp)
9 add sp,sp,32

10 jr ra ; return

Example 1: A typical stack buffer overflow example, in RISC-V
assembly, in which HDFI prevented by replacing load and store
instructions with two new load and store instructions (line 3 and
8). strcpy() at line 6 can overflow the return address saved at line 3,
and HDFI can accordingly detect the overflow when it is loaded back
at line 8.

In HDFI, we extend the ISA to perform DFI-style checks
with hardware. Specifically, we leverage memory tagging to
record the last writer of a memory word and provide new
instructions to set and check the tag. However, instead of
trying to fully replicate DFI, which would require supporting
arbitrary tag size, we focus on providing isolation, i.e., using a
one-bit tag to indicate the trustworthiness of the writer. Using
the same example, HDFI can be utilized to prevent the attack
by (1) using a new instruction sdset1 (store and set tag) to
set the tag of memory used to store return address to 1 (line
3); and (2) when loading the return address from memory for
function return, using another instruction ldchk1 (load and
check tag) to check if the memory tag is still 1. Since normal
store instructions (e.g., sd) would set the tag to 0, if attackers
try to overwrite the return address, the ldchk1 instruction would
fail and generate a memory exception.

B. Tag-based Memory Protection

Tag-based memory protection is not new and has been
explored in many previous works. For example, lowRISC [8]
uses a 2-bit tag to specify if a memory address is readable and
writable. Loki [84] also allows developers to specify permission
with a memory address, but is more flexible, as the permission is
related to the current protection domain. The problem with these
approaches (including the Mondriaan protection model [79]) is
that, although the objects (memory addresses) are fine-grained,
the subjects are still coarse-grained—the access permissions are
applied to the whole program or the whole protection domain.
However, the subjects are individual instructions in HDFI.

An alternative approach is to associate the access permission
with pointers instead of memory locations. For example,
Watchdog [51] and the application data integrity (ADI) [57]
mechanism on SPARC M7 processors allow a program to
associate memory addresses and pointers with versions (tags)
and require that when accessing the memory the version of
the pointer must match the version of the memory. The tricky
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the threat model and the problem scope. §III uses a concrete
example to explain how HDFI works, and discusses the differ-
ences between HDFI and similar work. §IV presents the the
design of HDFI. §V describes the security applications we have
developed. §VI provides some implementation details. §VII
describes the evaluation of HDFI and its security applications.
§VIII analyzes the security guarantee provided by HDFI, its
attack surface, and discusses best practices. §IX discusses the
limitations of our current design and future work. §X concludes
the paper.

II. THREAT MODEL AND ASSUMPTIONS

In this work, we focus on preventing memory corruption
based attacks; therefore we follow the typical threat model
of most related work. That is, we assume that software may
contain one or more memory vulnerabilities that, once triggered
would allow attackers to perform arbitrary memory reads and
writes. We do not limit what attackers would do with this
capability, as there are many different attack vectors given
this capability. As a hardware-based solution, we also do not
limit where the vulnerabilities are: they can be in user-mode
applications, OS kernel, hypervisor, etc. However, we assume
all hardware components are trusted and bug free, so attacks
that exploit hardware vulnerabilities, such as the row hammer
attack [42], are out-of-scope.

Similar to NX-bit, HDFI requires software modifications
to obtain its benefits. This can be done in many ways:
manual modification, compiler-based modification, static binary
rewriting, dynamic binary rewriting, etc. For the example
applications we demonstrated in this paper, we either manually
modified the source or leveraged compiler-based approaches.
However, we must emphasize that this is not a limitation of
HDFI and source code is not always necessary.

III. BACKGROUND AND RELATED WORK

This section provides the background of HDFI and compares
HDFI with related work.

A. Data-flow Integrity
The goal of HDFI is to prevent attackers from exploiting

memory corruption vulnerabilities to tamper/leak sensitive data.
To achieve this goal, we leverage data-flow integrity (DFI) [10].
DFI ensures that the runtime data-flow cannot deviate from the
data-flow graph generated from static analysis. In particular,
DFI assigns an identifier to each write instruction and records
the ID of the last instruction that writes to a memory position;
then at each read instruction, DFI checks whether the ID of
the last writer belongs to the set allowed by static analysis.

Take Example 1. This code snippet contains a buffer overflow
vulnerability at line 6, which allows attackers to use strcpy()
to overwrite the return address saved at line 3 and launch
control-flow hijacking attacks. Such attacks can be prevented
by checking if the return address read at line 8 is defined by
the store instruction at line 3.
1 main:
2 add sp,sp,-32
3 sd ra,24(sp)
4 ld a1,8(a1) ; argv[1]

5 mv a0,sp ; char buff[16]

6 call strcpy ; strcpy(buff, argv[1])

7 li a0,0
8 ld ra,24(sp)
9 add sp,sp,32

10 jr ra ; return

Example 1: A typical stack buffer overflow example, in RISC-V
assembly, in which HDFI prevented by replacing load and store
instructions with two new load and store instructions (line 3 and
8). strcpy() at line 6 can overflow the return address saved at line 3,
and HDFI can accordingly detect the overflow when it is loaded back
at line 8.

In HDFI, we extend the ISA to perform DFI-style checks
with hardware. Specifically, we leverage memory tagging to
record the last writer of a memory word and provide new
instructions to set and check the tag. However, instead of
trying to fully replicate DFI, which would require supporting
arbitrary tag size, we focus on providing isolation, i.e., using a
one-bit tag to indicate the trustworthiness of the writer. Using
the same example, HDFI can be utilized to prevent the attack
by (1) using a new instruction sdset1 (store and set tag) to
set the tag of memory used to store return address to 1 (line
3); and (2) when loading the return address from memory for
function return, using another instruction ldchk1 (load and
check tag) to check if the memory tag is still 1. Since normal
store instructions (e.g., sd) would set the tag to 0, if attackers
try to overwrite the return address, the ldchk1 instruction would
fail and generate a memory exception.

B. Tag-based Memory Protection

Tag-based memory protection is not new and has been
explored in many previous works. For example, lowRISC [8]
uses a 2-bit tag to specify if a memory address is readable and
writable. Loki [84] also allows developers to specify permission
with a memory address, but is more flexible, as the permission is
related to the current protection domain. The problem with these
approaches (including the Mondriaan protection model [79]) is
that, although the objects (memory addresses) are fine-grained,
the subjects are still coarse-grained—the access permissions are
applied to the whole program or the whole protection domain.
However, the subjects are individual instructions in HDFI.

An alternative approach is to associate the access permission
with pointers instead of memory locations. For example,
Watchdog [51] and the application data integrity (ADI) [57]
mechanism on SPARC M7 processors allow a program to
associate memory addresses and pointers with versions (tags)
and require that when accessing the memory the version of
the pointer must match the version of the memory. The tricky
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II. THREAT MODEL AND ASSUMPTIONS

In this work, we focus on preventing memory corruption
based attacks; therefore we follow the typical threat model
of most related work. That is, we assume that software may
contain one or more memory vulnerabilities that, once triggered
would allow attackers to perform arbitrary memory reads and
writes. We do not limit what attackers would do with this
capability, as there are many different attack vectors given
this capability. As a hardware-based solution, we also do not
limit where the vulnerabilities are: they can be in user-mode
applications, OS kernel, hypervisor, etc. However, we assume
all hardware components are trusted and bug free, so attacks
that exploit hardware vulnerabilities, such as the row hammer
attack [42], are out-of-scope.

Similar to NX-bit, HDFI requires software modifications
to obtain its benefits. This can be done in many ways:
manual modification, compiler-based modification, static binary
rewriting, dynamic binary rewriting, etc. For the example
applications we demonstrated in this paper, we either manually
modified the source or leveraged compiler-based approaches.
However, we must emphasize that this is not a limitation of
HDFI and source code is not always necessary.

III. BACKGROUND AND RELATED WORK

This section provides the background of HDFI and compares
HDFI with related work.

A. Data-flow Integrity
The goal of HDFI is to prevent attackers from exploiting

memory corruption vulnerabilities to tamper/leak sensitive data.
To achieve this goal, we leverage data-flow integrity (DFI) [10].
DFI ensures that the runtime data-flow cannot deviate from the
data-flow graph generated from static analysis. In particular,
DFI assigns an identifier to each write instruction and records
the ID of the last instruction that writes to a memory position;
then at each read instruction, DFI checks whether the ID of
the last writer belongs to the set allowed by static analysis.

Take Example 1. This code snippet contains a buffer overflow
vulnerability at line 6, which allows attackers to use strcpy()
to overwrite the return address saved at line 3 and launch
control-flow hijacking attacks. Such attacks can be prevented
by checking if the return address read at line 8 is defined by
the store instruction at line 3.
1 int main(int argc, const char *argv[]) {
2 char buf[16];
3 strcpy(buf, argv[1]);
4 return 0;
5 }

Example 1: A typical stack buffer overflow example, in RISC-V
assembly, in which HDFI prevented by replacing load and store
instructions with two new load and store instructions (line 3 and
8). strcpy() at line 6 can overflow the return address saved at line 3,
and HDFI can accordingly detect the overflow when it is loaded back
at line 8.

In HDFI, we extend the ISA to perform DFI-style checks
with hardware. Specifically, we leverage memory tagging to
record the last writer of a memory word and provide new
instructions to set and check the tag. However, instead of
trying to fully replicate DFI, which would require supporting
arbitrary tag size, we focus on providing isolation, i.e., using a
one-bit tag to indicate the trustworthiness of the writer. Using
the same example, HDFI can be utilized to prevent the attack
by (1) using a new instruction sdset1 (store and set tag) to
set the tag of memory used to store return address to 1 (line
3); and (2) when loading the return address from memory for
function return, using another instruction ldchk1 (load and
check tag) to check if the memory tag is still 1. Since normal
store instructions (e.g., sd) would set the tag to 0, if attackers
try to overwrite the return address, the ldchk1 instruction would
fail and generate a memory exception.

B. Tag-based Memory Protection
Tag-based memory protection is not new and has been

explored in many previous works. For example, lowRISC [8]
uses a 2-bit tag to specify if a memory address is readable and
writable. Loki [84] also allows developers to specify permission
with a memory address, but is more flexible, as the permission is
related to the current protection domain. The problem with these
approaches (including the Mondriaan protection model [79]) is
that, although the objects (memory addresses) are fine-grained,
the subjects are still coarse-grained—the access permissions are
applied to the whole program or the whole protection domain.
However, the subjects are individual instructions in HDFI.

An alternative approach is to associate the access permission
with pointers instead of memory locations. For example,
Watchdog [51] and the application data integrity (ADI) [57]
mechanism on SPARC M7 processors allow a program to
associate memory addresses and pointers with versions (tags)
and require that when accessing the memory the version of
the pointer must match the version of the memory. The tricky
part of this approach is how to maintain the tag of a pointer,
because every pointer should have two tags: one indicating the
tag of the target memory, and the other indicating the tag of
the memory where the pointer is stored. Without this, attackers
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based attacks; therefore we follow the typical threat model
of most related work. That is, we assume that software may
contain one or more memory vulnerabilities that, once triggered
would allow attackers to perform arbitrary memory reads and
writes. We do not limit what attackers would do with this
capability, as there are many different attack vectors given
this capability. As a hardware-based solution, we also do not
limit where the vulnerabilities are: they can be in user-mode
applications, OS kernel, hypervisor, etc. However, we assume
all hardware components are trusted and bug free, so attacks
that exploit hardware vulnerabilities, such as the row hammer
attack [42], are out-of-scope.

Similar to NX-bit, HDFI requires software modifications
to obtain its benefits. This can be done in many ways:
manual modification, compiler-based modification, static binary
rewriting, dynamic binary rewriting, etc. For the example
applications we demonstrated in this paper, we either manually
modified the source or leveraged compiler-based approaches.
However, we must emphasize that this is not a limitation of
HDFI and source code is not always necessary.

III. BACKGROUND AND RELATED WORK

This section provides the background of HDFI and compares
HDFI with related work.

A. Data-flow Integrity
The goal of HDFI is to prevent attackers from exploiting

memory corruption vulnerabilities to tamper/leak sensitive data.
To achieve this goal, we leverage data-flow integrity (DFI) [10].
DFI ensures that the runtime data-flow cannot deviate from the
data-flow graph generated from static analysis. In particular,
DFI assigns an identifier to each write instruction and records
the ID of the last instruction that writes to a memory position;
then at each read instruction, DFI checks whether the ID of
the last writer belongs to the set allowed by static analysis.

Take Example 1. This code snippet contains a buffer overflow
vulnerability at line 6, which allows attackers to use strcpy()
to overwrite the return address saved at line 3 and launch
control-flow hijacking attacks. Such attacks can be prevented
by checking if the return address read at line 8 is defined by
the store instruction at line 3.
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10 jr ra ; return

Example 1: A typical stack buffer overflow example, in RISC-V
assembly, in which HDFI prevented by replacing load and store
instructions with two new load and store instructions (line 3 and
8). strcpy() at line 6 can overflow the return address saved at line 3,
and HDFI can accordingly detect the overflow when it is loaded back
at line 8.

In HDFI, we extend the ISA to perform DFI-style checks
with hardware. Specifically, we leverage memory tagging to
record the last writer of a memory word and provide new
instructions to set and check the tag. However, instead of
trying to fully replicate DFI, which would require supporting
arbitrary tag size, we focus on providing isolation, i.e., using a
one-bit tag to indicate the trustworthiness of the writer. Using
the same example, HDFI can be utilized to prevent the attack
by (1) using a new instruction sdset1 (store and set tag) to
set the tag of memory used to store return address to 1 (line
3); and (2) when loading the return address from memory for
function return, using another instruction ldchk1 (load and
check tag) to check if the memory tag is still 1. Since normal
store instructions (e.g., sd) would set the tag to 0, if attackers
try to overwrite the return address, the ldchk1 instruction would
fail and generate a memory exception.

B. Tag-based Memory Protection

Tag-based memory protection is not new and has been
explored in many previous works. For example, lowRISC [8]
uses a 2-bit tag to specify if a memory address is readable and
writable. Loki [84] also allows developers to specify permission
with a memory address, but is more flexible, as the permission is
related to the current protection domain. The problem with these
approaches (including the Mondriaan protection model [79]) is
that, although the objects (memory addresses) are fine-grained,
the subjects are still coarse-grained—the access permissions are
applied to the whole program or the whole protection domain.
However, the subjects are individual instructions in HDFI.

An alternative approach is to associate the access permission
with pointers instead of memory locations. For example,
Watchdog [51] and the application data integrity (ADI) [57]
mechanism on SPARC M7 processors allow a program to
associate memory addresses and pointers with versions (tags)
and require that when accessing the memory the version of
the pointer must match the version of the memory. The tricky
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attack [42], are out-of-scope.

Similar to NX-bit, HDFI requires software modifications
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modified the source or leveraged compiler-based approaches.
However, we must emphasize that this is not a limitation of
HDFI and source code is not always necessary.

III. BACKGROUND AND RELATED WORK

This section provides the background of HDFI and compares
HDFI with related work.

A. Data-flow Integrity
The goal of HDFI is to prevent attackers from exploiting

memory corruption vulnerabilities to tamper/leak sensitive data.
To achieve this goal, we leverage data-flow integrity (DFI) [10].
DFI ensures that the runtime data-flow cannot deviate from the
data-flow graph generated from static analysis. In particular,
DFI assigns an identifier to each write instruction and records
the ID of the last instruction that writes to a memory position;
then at each read instruction, DFI checks whether the ID of
the last writer belongs to the set allowed by static analysis.

Take Example 1. This code snippet contains a buffer overflow
vulnerability at line 6, which allows attackers to use strcpy()
to overwrite the return address saved at line 3 and launch
control-flow hijacking attacks. Such attacks can be prevented
by checking if the return address read at line 8 is defined by
the store instruction at line 3.
1 int main(int argc, const char *argv[]) {
2 char buf[16];
3 strcpy(buf, argv[1]);
4 return 0;
5 }

Example 1: A typical stack buffer overflow example, in RISC-V
assembly, in which HDFI prevented by replacing load and store
instructions with two new load and store instructions (line 3 and
8). strcpy() at line 6 can overflow the return address saved at line 3,
and HDFI can accordingly detect the overflow when it is loaded back
at line 8.

In HDFI, we extend the ISA to perform DFI-style checks
with hardware. Specifically, we leverage memory tagging to
record the last writer of a memory word and provide new
instructions to set and check the tag. However, instead of
trying to fully replicate DFI, which would require supporting
arbitrary tag size, we focus on providing isolation, i.e., using a
one-bit tag to indicate the trustworthiness of the writer. Using
the same example, HDFI can be utilized to prevent the attack
by (1) using a new instruction sdset1 (store and set tag) to
set the tag of memory used to store return address to 1 (line
3); and (2) when loading the return address from memory for
function return, using another instruction ldchk1 (load and
check tag) to check if the memory tag is still 1. Since normal
store instructions (e.g., sd) would set the tag to 0, if attackers
try to overwrite the return address, the ldchk1 instruction would
fail and generate a memory exception.

B. Tag-based Memory Protection
Tag-based memory protection is not new and has been

explored in many previous works. For example, lowRISC [8]
uses a 2-bit tag to specify if a memory address is readable and
writable. Loki [84] also allows developers to specify permission
with a memory address, but is more flexible, as the permission is
related to the current protection domain. The problem with these
approaches (including the Mondriaan protection model [79]) is
that, although the objects (memory addresses) are fine-grained,
the subjects are still coarse-grained—the access permissions are
applied to the whole program or the whole protection domain.
However, the subjects are individual instructions in HDFI.

An alternative approach is to associate the access permission
with pointers instead of memory locations. For example,
Watchdog [51] and the application data integrity (ADI) [57]
mechanism on SPARC M7 processors allow a program to
associate memory addresses and pointers with versions (tags)
and require that when accessing the memory the version of
the pointer must match the version of the memory. The tricky
part of this approach is how to maintain the tag of a pointer,
because every pointer should have two tags: one indicating the
tag of the target memory, and the other indicating the tag of
the memory where the pointer is stored. Without this, attackers
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In this work, we focus on preventing memory corruption
based attacks; therefore we follow the typical threat model
of most related work. That is, we assume that software may
contain one or more memory vulnerabilities that, once triggered
would allow attackers to perform arbitrary memory reads and
writes. We do not limit what attackers would do with this
capability, as there are many different attack vectors given
this capability. As a hardware-based solution, we also do not
limit where the vulnerabilities are: they can be in user-mode
applications, OS kernel, hypervisor, etc. However, we assume
all hardware components are trusted and bug free, so attacks
that exploit hardware vulnerabilities, such as the row hammer
attack [42], are out-of-scope.

Similar to NX-bit, HDFI requires software modifications
to obtain its benefits. This can be done in many ways:
manual modification, compiler-based modification, static binary
rewriting, dynamic binary rewriting, etc. For the example
applications we demonstrated in this paper, we either manually
modified the source or leveraged compiler-based approaches.
However, we must emphasize that this is not a limitation of
HDFI and source code is not always necessary.

III. BACKGROUND AND RELATED WORK

This section provides the background of HDFI and compares
HDFI with related work.

A. Data-flow Integrity
The goal of HDFI is to prevent attackers from exploiting

memory corruption vulnerabilities to tamper/leak sensitive data.
To achieve this goal, we leverage data-flow integrity (DFI) [10].
DFI ensures that the runtime data-flow cannot deviate from the
data-flow graph generated from static analysis. In particular,
DFI assigns an identifier to each write instruction and records
the ID of the last instruction that writes to a memory position;
then at each read instruction, DFI checks whether the ID of
the last writer belongs to the set allowed by static analysis.

Take Example 1. This code snippet contains a buffer overflow
vulnerability at line 6, which allows attackers to use strcpy()
to overwrite the return address saved at line 3 and launch
control-flow hijacking attacks. Such attacks can be prevented
by checking if the return address read at line 8 is defined by
the store instruction at line 3.
1 main:
2 add sp,sp,-32
3 sd ra,24(sp)
4 ld a1,8(a1) ; argv[1]

5 mv a0,sp ; char buff[16]

6 call strcpy ; strcpy(buff, argv[1])

7 li a0,0
8 ld ra,24(sp)
9 add sp,sp,32

10 jr ra ; return

Example 1: A typical stack buffer overflow example, in RISC-V
assembly, in which HDFI prevented by replacing load and store
instructions with two new load and store instructions (line 3 and
8). strcpy() at line 6 can overflow the return address saved at line 3,
and HDFI can accordingly detect the overflow when it is loaded back
at line 8.

In HDFI, we extend the ISA to perform DFI-style checks
with hardware. Specifically, we leverage memory tagging to
record the last writer of a memory word and provide new
instructions to set and check the tag. However, instead of
trying to fully replicate DFI, which would require supporting
arbitrary tag size, we focus on providing isolation, i.e., using a
one-bit tag to indicate the trustworthiness of the writer. Using
the same example, HDFI can be utilized to prevent the attack
by (1) using a new instruction sdset1 (store and set tag) to
set the tag of memory used to store return address to 1 (line
3); and (2) when loading the return address from memory for
function return, using another instruction ldchk1 (load and
check tag) to check if the memory tag is still 1. Since normal
store instructions (e.g., sd) would set the tag to 0, if attackers
try to overwrite the return address, the ldchk1 instruction would
fail and generate a memory exception.

B. Tag-based Memory Protection

Tag-based memory protection is not new and has been
explored in many previous works. For example, lowRISC [8]
uses a 2-bit tag to specify if a memory address is readable and
writable. Loki [84] also allows developers to specify permission
with a memory address, but is more flexible, as the permission is
related to the current protection domain. The problem with these
approaches (including the Mondriaan protection model [79]) is
that, although the objects (memory addresses) are fine-grained,
the subjects are still coarse-grained—the access permissions are
applied to the whole program or the whole protection domain.
However, the subjects are individual instructions in HDFI.

An alternative approach is to associate the access permission
with pointers instead of memory locations. For example,
Watchdog [51] and the application data integrity (ADI) [57]
mechanism on SPARC M7 processors allow a program to
associate memory addresses and pointers with versions (tags)
and require that when accessing the memory the version of
the pointer must match the version of the memory. The tricky
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However, we must emphasize that this is not a limitation of
HDFI and source code is not always necessary.

III. BACKGROUND AND RELATED WORK

This section provides the background of HDFI and compares
HDFI with related work.

A. Data-flow Integrity
The goal of HDFI is to prevent attackers from exploiting

memory corruption vulnerabilities to tamper/leak sensitive data.
To achieve this goal, we leverage data-flow integrity (DFI) [10].
DFI ensures that the runtime data-flow cannot deviate from the
data-flow graph generated from static analysis. In particular,
DFI assigns an identifier to each write instruction and records
the ID of the last instruction that writes to a memory position;
then at each read instruction, DFI checks whether the ID of
the last writer belongs to the set allowed by static analysis.

Take Example 1. This code snippet contains a buffer overflow
vulnerability at line 6, which allows attackers to use strcpy()
to overwrite the return address saved at line 3 and launch
control-flow hijacking attacks. Such attacks can be prevented
by checking if the return address read at line 8 is defined by
the store instruction at line 3.
1 int main(int argc, const char *argv[]) {
2 char buf[16];
3 strcpy(buf, argv[1]);
4 return 0;
5 }

Example 1: A typical stack buffer overflow example, in RISC-V
assembly, in which HDFI prevented by replacing load and store
instructions with two new load and store instructions (line 3 and
8). strcpy() at line 6 can overflow the return address saved at line 3,
and HDFI can accordingly detect the overflow when it is loaded back
at line 8.

In HDFI, we extend the ISA to perform DFI-style checks
with hardware. Specifically, we leverage memory tagging to
record the last writer of a memory word and provide new
instructions to set and check the tag. However, instead of
trying to fully replicate DFI, which would require supporting
arbitrary tag size, we focus on providing isolation, i.e., using a
one-bit tag to indicate the trustworthiness of the writer. Using
the same example, HDFI can be utilized to prevent the attack
by (1) using a new instruction sdset1 (store and set tag) to
set the tag of memory used to store return address to 1 (line
3); and (2) when loading the return address from memory for
function return, using another instruction ldchk1 (load and
check tag) to check if the memory tag is still 1. Since normal
store instructions (e.g., sd) would set the tag to 0, if attackers
try to overwrite the return address, the ldchk1 instruction would
fail and generate a memory exception.

B. Tag-based Memory Protection
Tag-based memory protection is not new and has been

explored in many previous works. For example, lowRISC [8]
uses a 2-bit tag to specify if a memory address is readable and
writable. Loki [84] also allows developers to specify permission
with a memory address, but is more flexible, as the permission is
related to the current protection domain. The problem with these
approaches (including the Mondriaan protection model [79]) is
that, although the objects (memory addresses) are fine-grained,
the subjects are still coarse-grained—the access permissions are
applied to the whole program or the whole protection domain.
However, the subjects are individual instructions in HDFI.

An alternative approach is to associate the access permission
with pointers instead of memory locations. For example,
Watchdog [51] and the application data integrity (ADI) [57]
mechanism on SPARC M7 processors allow a program to
associate memory addresses and pointers with versions (tags)
and require that when accessing the memory the version of
the pointer must match the version of the memory. The tricky
part of this approach is how to maintain the tag of a pointer,
because every pointer should have two tags: one indicating the
tag of the target memory, and the other indicating the tag of
the memory where the pointer is stored. Without this, attackers
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Limitations

• Software: lacks good isolation mechanisms in 64-bit world 
• SFI and virtual address space: secure but expensive 
• Address randomization: efficient but insecure 

• Hardware: lacks flexibility 
• Context saving/restoring (setjmp/longjmp), deep recursion, kernel stack, etc. 
• Other data: code pointers, non-control data 

• Data shadowing: adds overheads 
• Breaks data locality, needs additional step to look up or reserved register(s) 
• Occupies additional memory
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Hardware-assisted data-flow isolation

• Secure and efficient 
• Low performance overhead and strong security guarantees 

• Flexible 
• Capable of supporting different security model/mechanisms 

• Fine-grained 
• No more data-shadowing 

• Practical 
• Minimized hardware changes
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the paper.
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In this work, we focus on preventing memory corruption
based attacks; therefore we follow the typical threat model
of most related work. That is, we assume that software may
contain one or more memory vulnerabilities that, once triggered
would allow attackers to perform arbitrary memory reads and
writes. We do not limit what attackers would do with this
capability, as there are many different attack vectors given
this capability. As a hardware-based solution, we also do not
limit where the vulnerabilities are: they can be in user-mode
applications, OS kernel, hypervisor, etc. However, we assume
all hardware components are trusted and bug free, so attacks
that exploit hardware vulnerabilities, such as the row hammer
attack [42], are out-of-scope.

Similar to NX-bit, HDFI requires software modifications
to obtain its benefits. This can be done in many ways:
manual modification, compiler-based modification, static binary
rewriting, dynamic binary rewriting, etc. For the example
applications we demonstrated in this paper, we either manually
modified the source or leveraged compiler-based approaches.
However, we must emphasize that this is not a limitation of
HDFI and source code is not always necessary.

III. BACKGROUND AND RELATED WORK

This section provides the background of HDFI and compares
HDFI with related work.

A. Data-flow Integrity
The goal of HDFI is to prevent attackers from exploiting

memory corruption vulnerabilities to tamper/leak sensitive data.
To achieve this goal, we leverage data-flow integrity (DFI) [10].
DFI ensures that the runtime data-flow cannot deviate from the
data-flow graph generated from static analysis. In particular,
DFI assigns an identifier to each write instruction and records
the ID of the last instruction that writes to a memory position;
then at each read instruction, DFI checks whether the ID of
the last writer belongs to the set allowed by static analysis.

Take Example 1. This code snippet contains a buffer overflow
vulnerability at line 6, which allows attackers to use strcpy()
to overwrite the return address saved at line 3 and launch
control-flow hijacking attacks. Such attacks can be prevented
by checking if the return address read at line 8 is defined by
the store instruction at line 3.
1 main:
2 add sp,sp,-32
3 sd ra,24(sp)
4 ld a1,8(a1) ; argv[1]

5 mv a0,sp ; char buff[16]

6 call strcpy ; strcpy(buff, argv[1])

7 li a0,0
8 ld ra,24(sp)
9 add sp,sp,32

10 jr ra ; return

Example 1: A typical stack buffer overflow example, in RISC-V
assembly, in which HDFI prevented by replacing load and store
instructions with two new load and store instructions (line 3 and
8). strcpy() at line 6 can overflow the return address saved at line 3,
and HDFI can accordingly detect the overflow when it is loaded back
at line 8.

In HDFI, we extend the ISA to perform DFI-style checks
with hardware. Specifically, we leverage memory tagging to
record the last writer of a memory word and provide new
instructions to set and check the tag. However, instead of
trying to fully replicate DFI, which would require supporting
arbitrary tag size, we focus on providing isolation, i.e., using a
one-bit tag to indicate the trustworthiness of the writer. Using
the same example, HDFI can be utilized to prevent the attack
by (1) using a new instruction sdset1 (store and set tag) to
set the tag of memory used to store return address to 1 (line
3); and (2) when loading the return address from memory for
function return, using another instruction ldchk1 (load and
check tag) to check if the memory tag is still 1. Since normal
store instructions (e.g., sd) would set the tag to 0, if attackers
try to overwrite the return address, the ldchk1 instruction would
fail and generate a memory exception.

B. Tag-based Memory Protection

Tag-based memory protection is not new and has been
explored in many previous works. For example, lowRISC [8]
uses a 2-bit tag to specify if a memory address is readable and
writable. Loki [84] also allows developers to specify permission
with a memory address, but is more flexible, as the permission is
related to the current protection domain. The problem with these
approaches (including the Mondriaan protection model [79]) is
that, although the objects (memory addresses) are fine-grained,
the subjects are still coarse-grained—the access permissions are
applied to the whole program or the whole protection domain.
However, the subjects are individual instructions in HDFI.

An alternative approach is to associate the access permission
with pointers instead of memory locations. For example,
Watchdog [51] and the application data integrity (ADI) [57]
mechanism on SPARC M7 processors allow a program to
associate memory addresses and pointers with versions (tags)
and require that when accessing the memory the version of
the pointer must match the version of the memory. The tricky
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• Implementation: We implemented the proposed hardware
with realization on FGPA board. We also implemented all
six security applications (§VI).

• Evaluation: We quantitatively evaluated: (1) the perfor-
mance impact of HDFI and the effectiveness of our op-
timization techniques and (2) the performance improvement
delivered to the security mechanisms we implemented (§VII).
The rest of this paper is organized as follows. §II defines

the threat model and the problem scope. §III uses a concrete
example to explain how HDFI works, and discusses the differ-
ences between HDFI and similar work. §IV presents the the
design of HDFI. §V describes the security applications we have
developed. §VI provides some implementation details. §VII
describes the evaluation of HDFI and its security applications.
§VIII analyzes the security guarantee provided by HDFI, its
attack surface, and discusses best practices. §IX discusses the
limitations of our current design and future work. §X concludes
the paper.

II. THREAT MODEL AND ASSUMPTIONS

In this work, we focus on preventing memory corruption
based attacks; therefore we follow the typical threat model
of most related work. That is, we assume that software may
contain one or more memory vulnerabilities that, once triggered
would allow attackers to perform arbitrary memory reads and
writes. We do not limit what attackers would do with this
capability, as there are many different attack vectors given
this capability. As a hardware-based solution, we also do not
limit where the vulnerabilities are: they can be in user-mode
applications, OS kernel, hypervisor, etc. However, we assume
all hardware components are trusted and bug free, so attacks
that exploit hardware vulnerabilities, such as the row hammer
attack [42], are out-of-scope.

Similar to NX-bit, HDFI requires software modifications
to obtain its benefits. This can be done in many ways:
manual modification, compiler-based modification, static binary
rewriting, dynamic binary rewriting, etc. For the example
applications we demonstrated in this paper, we either manually
modified the source or leveraged compiler-based approaches.
However, we must emphasize that this is not a limitation of
HDFI and source code is not always necessary.

III. BACKGROUND AND RELATED WORK

This section provides the background of HDFI and compares
HDFI with related work.

A. Data-flow Integrity
The goal of HDFI is to prevent attackers from exploiting

memory corruption vulnerabilities to tamper/leak sensitive data.
To achieve this goal, we leverage data-flow integrity (DFI) [10].
DFI ensures that the runtime data-flow cannot deviate from the
data-flow graph generated from static analysis. In particular,
DFI assigns an identifier to each write instruction and records
the ID of the last instruction that writes to a memory position;
then at each read instruction, DFI checks whether the ID of
the last writer belongs to the set allowed by static analysis.

Take Example 1. This code snippet contains a buffer overflow
vulnerability at line 6, which allows attackers to use strcpy()
to overwrite the return address saved at line 3 and launch
control-flow hijacking attacks. Such attacks can be prevented
by checking if the return address read at line 8 is defined by
the store instruction at line 3.
1 main:
2 add sp,sp,-32
3 sd ra,24(sp)
4 ld a1,8(a1) ; argv[1]

5 mv a0,sp ; char buff[16]

6 call strcpy ; strcpy(buff, argv[1])

7 li a0,0
8 ld ra,24(sp)
9 add sp,sp,32

10 jr ra ; return

Example 1: A typical stack buffer overflow example, in RISC-V
assembly, in which HDFI prevented by replacing load and store
instructions with two new load and store instructions (line 3 and
8). strcpy() at line 6 can overflow the return address saved at line 3,
and HDFI can accordingly detect the overflow when it is loaded back
at line 8.

In HDFI, we extend the ISA to perform DFI-style checks
with hardware. Specifically, we leverage memory tagging to
record the last writer of a memory word and provide new
instructions to set and check the tag. However, instead of
trying to fully replicate DFI, which would require supporting
arbitrary tag size, we focus on providing isolation, i.e., using a
one-bit tag to indicate the trustworthiness of the writer. Using
the same example, HDFI can be utilized to prevent the attack
by (1) using a new instruction sdset1 (store and set tag) to
set the tag of memory used to store return address to 1 (line
3); and (2) when loading the return address from memory for
function return, using another instruction ldchk1 (load and
check tag) to check if the memory tag is still 1. Since normal
store instructions (e.g., sd) would set the tag to 0, if attackers
try to overwrite the return address, the ldchk1 instruction would
fail and generate a memory exception.

B. Tag-based Memory Protection

Tag-based memory protection is not new and has been
explored in many previous works. For example, lowRISC [8]
uses a 2-bit tag to specify if a memory address is readable and
writable. Loki [84] also allows developers to specify permission
with a memory address, but is more flexible, as the permission is
related to the current protection domain. The problem with these
approaches (including the Mondriaan protection model [79]) is
that, although the objects (memory addresses) are fine-grained,
the subjects are still coarse-grained—the access permissions are
applied to the whole program or the whole protection domain.
However, the subjects are individual instructions in HDFI.

An alternative approach is to associate the access permission
with pointers instead of memory locations. For example,
Watchdog [51] and the application data integrity (ADI) [57]
mechanism on SPARC M7 processors allow a program to
associate memory addresses and pointers with versions (tags)
and require that when accessing the memory the version of
the pointer must match the version of the memory. The tricky

3



Data-flow Integrity [OSDI’06]

7

ret	addr

buf

sp

Runtime data-flow should not deviate 
from static data-flow graph 

0

0

0

0

0

0

0

0

0

3

• Implementation: We implemented the proposed hardware
with realization on FGPA board. We also implemented all
six security applications (§VI).

• Evaluation: We quantitatively evaluated: (1) the perfor-
mance impact of HDFI and the effectiveness of our op-
timization techniques and (2) the performance improvement
delivered to the security mechanisms we implemented (§VII).
The rest of this paper is organized as follows. §II defines

the threat model and the problem scope. §III uses a concrete
example to explain how HDFI works, and discusses the differ-
ences between HDFI and similar work. §IV presents the the
design of HDFI. §V describes the security applications we have
developed. §VI provides some implementation details. §VII
describes the evaluation of HDFI and its security applications.
§VIII analyzes the security guarantee provided by HDFI, its
attack surface, and discusses best practices. §IX discusses the
limitations of our current design and future work. §X concludes
the paper.

II. THREAT MODEL AND ASSUMPTIONS

In this work, we focus on preventing memory corruption
based attacks; therefore we follow the typical threat model
of most related work. That is, we assume that software may
contain one or more memory vulnerabilities that, once triggered
would allow attackers to perform arbitrary memory reads and
writes. We do not limit what attackers would do with this
capability, as there are many different attack vectors given
this capability. As a hardware-based solution, we also do not
limit where the vulnerabilities are: they can be in user-mode
applications, OS kernel, hypervisor, etc. However, we assume
all hardware components are trusted and bug free, so attacks
that exploit hardware vulnerabilities, such as the row hammer
attack [42], are out-of-scope.

Similar to NX-bit, HDFI requires software modifications
to obtain its benefits. This can be done in many ways:
manual modification, compiler-based modification, static binary
rewriting, dynamic binary rewriting, etc. For the example
applications we demonstrated in this paper, we either manually
modified the source or leveraged compiler-based approaches.
However, we must emphasize that this is not a limitation of
HDFI and source code is not always necessary.

III. BACKGROUND AND RELATED WORK

This section provides the background of HDFI and compares
HDFI with related work.

A. Data-flow Integrity
The goal of HDFI is to prevent attackers from exploiting

memory corruption vulnerabilities to tamper/leak sensitive data.
To achieve this goal, we leverage data-flow integrity (DFI) [10].
DFI ensures that the runtime data-flow cannot deviate from the
data-flow graph generated from static analysis. In particular,
DFI assigns an identifier to each write instruction and records
the ID of the last instruction that writes to a memory position;
then at each read instruction, DFI checks whether the ID of
the last writer belongs to the set allowed by static analysis.

Take Example 1. This code snippet contains a buffer overflow
vulnerability at line 6, which allows attackers to use strcpy()
to overwrite the return address saved at line 3 and launch
control-flow hijacking attacks. Such attacks can be prevented
by checking if the return address read at line 8 is defined by
the store instruction at line 3.
1 main:
2 add sp,sp,-32
3 sd ra,24(sp)
4 ld a1,8(a1) ; argv[1]

5 mv a0,sp ; char buff[16]

6 call strcpy ; strcpy(buff, argv[1])

7 li a0,0
8 ld ra,24(sp)
9 add sp,sp,32

10 jr ra ; return

Example 1: A typical stack buffer overflow example, in RISC-V
assembly, in which HDFI prevented by replacing load and store
instructions with two new load and store instructions (line 3 and
8). strcpy() at line 6 can overflow the return address saved at line 3,
and HDFI can accordingly detect the overflow when it is loaded back
at line 8.

In HDFI, we extend the ISA to perform DFI-style checks
with hardware. Specifically, we leverage memory tagging to
record the last writer of a memory word and provide new
instructions to set and check the tag. However, instead of
trying to fully replicate DFI, which would require supporting
arbitrary tag size, we focus on providing isolation, i.e., using a
one-bit tag to indicate the trustworthiness of the writer. Using
the same example, HDFI can be utilized to prevent the attack
by (1) using a new instruction sdset1 (store and set tag) to
set the tag of memory used to store return address to 1 (line
3); and (2) when loading the return address from memory for
function return, using another instruction ldchk1 (load and
check tag) to check if the memory tag is still 1. Since normal
store instructions (e.g., sd) would set the tag to 0, if attackers
try to overwrite the return address, the ldchk1 instruction would
fail and generate a memory exception.

B. Tag-based Memory Protection

Tag-based memory protection is not new and has been
explored in many previous works. For example, lowRISC [8]
uses a 2-bit tag to specify if a memory address is readable and
writable. Loki [84] also allows developers to specify permission
with a memory address, but is more flexible, as the permission is
related to the current protection domain. The problem with these
approaches (including the Mondriaan protection model [79]) is
that, although the objects (memory addresses) are fine-grained,
the subjects are still coarse-grained—the access permissions are
applied to the whole program or the whole protection domain.
However, the subjects are individual instructions in HDFI.

An alternative approach is to associate the access permission
with pointers instead of memory locations. For example,
Watchdog [51] and the application data integrity (ADI) [57]
mechanism on SPARC M7 processors allow a program to
associate memory addresses and pointers with versions (tags)
and require that when accessing the memory the version of
the pointer must match the version of the memory. The tricky
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• Implementation: We implemented the proposed hardware
with realization on FGPA board. We also implemented all
six security applications (§VI).

• Evaluation: We quantitatively evaluated: (1) the perfor-
mance impact of HDFI and the effectiveness of our op-
timization techniques and (2) the performance improvement
delivered to the security mechanisms we implemented (§VII).
The rest of this paper is organized as follows. §II defines

the threat model and the problem scope. §III uses a concrete
example to explain how HDFI works, and discusses the differ-
ences between HDFI and similar work. §IV presents the the
design of HDFI. §V describes the security applications we have
developed. §VI provides some implementation details. §VII
describes the evaluation of HDFI and its security applications.
§VIII analyzes the security guarantee provided by HDFI, its
attack surface, and discusses best practices. §IX discusses the
limitations of our current design and future work. §X concludes
the paper.

II. THREAT MODEL AND ASSUMPTIONS

In this work, we focus on preventing memory corruption
based attacks; therefore we follow the typical threat model
of most related work. That is, we assume that software may
contain one or more memory vulnerabilities that, once triggered
would allow attackers to perform arbitrary memory reads and
writes. We do not limit what attackers would do with this
capability, as there are many different attack vectors given
this capability. As a hardware-based solution, we also do not
limit where the vulnerabilities are: they can be in user-mode
applications, OS kernel, hypervisor, etc. However, we assume
all hardware components are trusted and bug free, so attacks
that exploit hardware vulnerabilities, such as the row hammer
attack [42], are out-of-scope.

Similar to NX-bit, HDFI requires software modifications
to obtain its benefits. This can be done in many ways:
manual modification, compiler-based modification, static binary
rewriting, dynamic binary rewriting, etc. For the example
applications we demonstrated in this paper, we either manually
modified the source or leveraged compiler-based approaches.
However, we must emphasize that this is not a limitation of
HDFI and source code is not always necessary.

III. BACKGROUND AND RELATED WORK

This section provides the background of HDFI and compares
HDFI with related work.

A. Data-flow Integrity
The goal of HDFI is to prevent attackers from exploiting

memory corruption vulnerabilities to tamper/leak sensitive data.
To achieve this goal, we leverage data-flow integrity (DFI) [10].
DFI ensures that the runtime data-flow cannot deviate from the
data-flow graph generated from static analysis. In particular,
DFI assigns an identifier to each write instruction and records
the ID of the last instruction that writes to a memory position;
then at each read instruction, DFI checks whether the ID of
the last writer belongs to the set allowed by static analysis.

Take Example 1. This code snippet contains a buffer overflow
vulnerability at line 6, which allows attackers to use strcpy()
to overwrite the return address saved at line 3 and launch
control-flow hijacking attacks. Such attacks can be prevented
by checking if the return address read at line 8 is defined by
the store instruction at line 3.
1 main:
2 add sp,sp,-32
3 sd ra,24(sp)
4 ld a1,8(a1) ; argv[1]

5 mv a0,sp ; char buff[16]

6 call strcpy ; strcpy(buff, argv[1])

7 li a0,0
8 ld ra,24(sp)
9 add sp,sp,32

10 jr ra ; return

Example 1: A typical stack buffer overflow example, in RISC-V
assembly, in which HDFI prevented by replacing load and store
instructions with two new load and store instructions (line 3 and
8). strcpy() at line 6 can overflow the return address saved at line 3,
and HDFI can accordingly detect the overflow when it is loaded back
at line 8.

In HDFI, we extend the ISA to perform DFI-style checks
with hardware. Specifically, we leverage memory tagging to
record the last writer of a memory word and provide new
instructions to set and check the tag. However, instead of
trying to fully replicate DFI, which would require supporting
arbitrary tag size, we focus on providing isolation, i.e., using a
one-bit tag to indicate the trustworthiness of the writer. Using
the same example, HDFI can be utilized to prevent the attack
by (1) using a new instruction sdset1 (store and set tag) to
set the tag of memory used to store return address to 1 (line
3); and (2) when loading the return address from memory for
function return, using another instruction ldchk1 (load and
check tag) to check if the memory tag is still 1. Since normal
store instructions (e.g., sd) would set the tag to 0, if attackers
try to overwrite the return address, the ldchk1 instruction would
fail and generate a memory exception.

B. Tag-based Memory Protection

Tag-based memory protection is not new and has been
explored in many previous works. For example, lowRISC [8]
uses a 2-bit tag to specify if a memory address is readable and
writable. Loki [84] also allows developers to specify permission
with a memory address, but is more flexible, as the permission is
related to the current protection domain. The problem with these
approaches (including the Mondriaan protection model [79]) is
that, although the objects (memory addresses) are fine-grained,
the subjects are still coarse-grained—the access permissions are
applied to the whole program or the whole protection domain.
However, the subjects are individual instructions in HDFI.

An alternative approach is to associate the access permission
with pointers instead of memory locations. For example,
Watchdog [51] and the application data integrity (ADI) [57]
mechanism on SPARC M7 processors allow a program to
associate memory addresses and pointers with versions (tags)
and require that when accessing the memory the version of
the pointer must match the version of the memory. The tricky
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• Implementation: We implemented the proposed hardware
with realization on FGPA board. We also implemented all
six security applications (§VI).

• Evaluation: We quantitatively evaluated: (1) the perfor-
mance impact of HDFI and the effectiveness of our op-
timization techniques and (2) the performance improvement
delivered to the security mechanisms we implemented (§VII).
The rest of this paper is organized as follows. §II defines

the threat model and the problem scope. §III uses a concrete
example to explain how HDFI works, and discusses the differ-
ences between HDFI and similar work. §IV presents the the
design of HDFI. §V describes the security applications we have
developed. §VI provides some implementation details. §VII
describes the evaluation of HDFI and its security applications.
§VIII analyzes the security guarantee provided by HDFI, its
attack surface, and discusses best practices. §IX discusses the
limitations of our current design and future work. §X concludes
the paper.

II. THREAT MODEL AND ASSUMPTIONS

In this work, we focus on preventing memory corruption
based attacks; therefore we follow the typical threat model
of most related work. That is, we assume that software may
contain one or more memory vulnerabilities that, once triggered
would allow attackers to perform arbitrary memory reads and
writes. We do not limit what attackers would do with this
capability, as there are many different attack vectors given
this capability. As a hardware-based solution, we also do not
limit where the vulnerabilities are: they can be in user-mode
applications, OS kernel, hypervisor, etc. However, we assume
all hardware components are trusted and bug free, so attacks
that exploit hardware vulnerabilities, such as the row hammer
attack [42], are out-of-scope.

Similar to NX-bit, HDFI requires software modifications
to obtain its benefits. This can be done in many ways:
manual modification, compiler-based modification, static binary
rewriting, dynamic binary rewriting, etc. For the example
applications we demonstrated in this paper, we either manually
modified the source or leveraged compiler-based approaches.
However, we must emphasize that this is not a limitation of
HDFI and source code is not always necessary.

III. BACKGROUND AND RELATED WORK

This section provides the background of HDFI and compares
HDFI with related work.

A. Data-flow Integrity
The goal of HDFI is to prevent attackers from exploiting

memory corruption vulnerabilities to tamper/leak sensitive data.
To achieve this goal, we leverage data-flow integrity (DFI) [10].
DFI ensures that the runtime data-flow cannot deviate from the
data-flow graph generated from static analysis. In particular,
DFI assigns an identifier to each write instruction and records
the ID of the last instruction that writes to a memory position;
then at each read instruction, DFI checks whether the ID of
the last writer belongs to the set allowed by static analysis.

Take Example 1. This code snippet contains a buffer overflow
vulnerability at line 6, which allows attackers to use strcpy()
to overwrite the return address saved at line 3 and launch
control-flow hijacking attacks. Such attacks can be prevented
by checking if the return address read at line 8 is defined by
the store instruction at line 3.
1 main:
2 add sp,sp,-32
3 sd ra,24(sp)
4 ld a1,8(a1) ; argv[1]

5 mv a0,sp ; char buff[16]

6 call strcpy ; strcpy(buff, argv[1])

7 li a0,0
8 ld ra,24(sp)
9 add sp,sp,32

10 jr ra ; return

Example 1: A typical stack buffer overflow example, in RISC-V
assembly, in which HDFI prevented by replacing load and store
instructions with two new load and store instructions (line 3 and
8). strcpy() at line 6 can overflow the return address saved at line 3,
and HDFI can accordingly detect the overflow when it is loaded back
at line 8.

In HDFI, we extend the ISA to perform DFI-style checks
with hardware. Specifically, we leverage memory tagging to
record the last writer of a memory word and provide new
instructions to set and check the tag. However, instead of
trying to fully replicate DFI, which would require supporting
arbitrary tag size, we focus on providing isolation, i.e., using a
one-bit tag to indicate the trustworthiness of the writer. Using
the same example, HDFI can be utilized to prevent the attack
by (1) using a new instruction sdset1 (store and set tag) to
set the tag of memory used to store return address to 1 (line
3); and (2) when loading the return address from memory for
function return, using another instruction ldchk1 (load and
check tag) to check if the memory tag is still 1. Since normal
store instructions (e.g., sd) would set the tag to 0, if attackers
try to overwrite the return address, the ldchk1 instruction would
fail and generate a memory exception.

B. Tag-based Memory Protection

Tag-based memory protection is not new and has been
explored in many previous works. For example, lowRISC [8]
uses a 2-bit tag to specify if a memory address is readable and
writable. Loki [84] also allows developers to specify permission
with a memory address, but is more flexible, as the permission is
related to the current protection domain. The problem with these
approaches (including the Mondriaan protection model [79]) is
that, although the objects (memory addresses) are fine-grained,
the subjects are still coarse-grained—the access permissions are
applied to the whole program or the whole protection domain.
However, the subjects are individual instructions in HDFI.

An alternative approach is to associate the access permission
with pointers instead of memory locations. For example,
Watchdog [51] and the application data integrity (ADI) [57]
mechanism on SPARC M7 processors allow a program to
associate memory addresses and pointers with versions (tags)
and require that when accessing the memory the version of
the pointer must match the version of the memory. The tricky
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ISA extension

• Tagged memory 
• Machine word granularity 
• Fixed tag size à currently only 1 bit  (sensitive or not) 

• Three new atomic instructions to enable DFI-style checks 
• sdset1, ldchk0, ldchk1

• New semantic of old instructions (backward compatible) 
• sd : sdset0
• ld : now tag check
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Hardware extension

• Cache extension 
• Extra bits in the cache line for storing 

the tag (reusing existing cache 
coherence interconnect) 

• Memory Tagger 
• Emulating tagged memory without 

physically extending the main memory
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Optimizations

• Memory Tagger introduces additional performance overhead 
• Naive implementation: 2x memory accesses, 1 for data, 1 for tag 

• Three optimization techniques  
• Tag cache 
• Tag valid bits (TVB) 
• Meta tag table (MTT)
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Return address protection

• Policy: return address should always have tag 1 

• Benefits: secure and supports context saving/restoring, deep recursion, 
modified return address, kernel stack
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• Implementation: We implemented the proposed hardware
with realization on FGPA board. We also implemented all
six security applications (§VI).

• Evaluation: We quantitatively evaluated: (1) the perfor-
mance impact of HDFI and the effectiveness of our op-
timization techniques and (2) the performance improvement
delivered to the security mechanisms we implemented (§VII).
The rest of this paper is organized as follows. §II defines

the threat model and the problem scope. §III uses a concrete
example to explain how HDFI works, and discusses the differ-
ences between HDFI and similar work. §IV presents the the
design of HDFI. §V describes the security applications we have
developed. §VI provides some implementation details. §VII
describes the evaluation of HDFI and its security applications.
§VIII analyzes the security guarantee provided by HDFI, its
attack surface, and discusses best practices. §IX discusses the
limitations of our current design and future work. §X concludes
the paper.

II. THREAT MODEL AND ASSUMPTIONS

In this work, we focus on preventing memory corruption
based attacks; therefore we follow the typical threat model
of most related work. That is, we assume that software may
contain one or more memory vulnerabilities that, once triggered
would allow attackers to perform arbitrary memory reads and
writes. We do not limit what attackers would do with this
capability, as there are many different attack vectors given
this capability. As a hardware-based solution, we also do not
limit where the vulnerabilities are: they can be in user-mode
applications, OS kernel, hypervisor, etc. However, we assume
all hardware components are trusted and bug free, so attacks
that exploit hardware vulnerabilities, such as the row hammer
attack [42], are out-of-scope.

Similar to NX-bit, HDFI requires software modifications
to obtain its benefits. This can be done in many ways:
manual modification, compiler-based modification, static binary
rewriting, dynamic binary rewriting, etc. For the example
applications we demonstrated in this paper, we either manually
modified the source or leveraged compiler-based approaches.
However, we must emphasize that this is not a limitation of
HDFI and source code is not always necessary.

III. BACKGROUND AND RELATED WORK

This section provides the background of HDFI and compares
HDFI with related work.

A. Data-flow Integrity
The goal of HDFI is to prevent attackers from exploiting

memory corruption vulnerabilities to tamper/leak sensitive data.
To achieve this goal, we leverage data-flow integrity (DFI) [10].
DFI ensures that the runtime data-flow cannot deviate from the
data-flow graph generated from static analysis. In particular,
DFI assigns an identifier to each write instruction and records
the ID of the last instruction that writes to a memory position;
then at each read instruction, DFI checks whether the ID of
the last writer belongs to the set allowed by static analysis.

Take Example 1. This code snippet contains a buffer overflow
vulnerability at line 6, which allows attackers to use strcpy()
to overwrite the return address saved at line 3 and launch
control-flow hijacking attacks. Such attacks can be prevented
by checking if the return address read at line 8 is defined by
the store instruction at line 3.
1 main:
2 add sp,sp,-32
3 ?sdset1 ra,24(sp)
4 ld a1,8(a1) ; argv[1]

5 mv a0,sp ; char buff[16]

6 call strcpy ; strcpy(buff, argv[1])

7 li a0,0
8 ?ldchk1 ra,24(sp)
9 add sp,sp,32

10 jr ra ; return

Example 1: A typical stack buffer overflow example, in RISC-V
assembly, in which HDFI prevented by replacing load and store
instructions with two new load and store instructions (line 3 and
8). strcpy() at line 6 can overflow the return address saved at line 3,
and HDFI can accordingly detect the overflow when it is loaded back
at line 8.

In HDFI, we extend the ISA to perform DFI-style checks
with hardware. Specifically, we leverage memory tagging to
record the last writer of a memory word and provide new
instructions to set and check the tag. However, instead of
trying to fully replicate DFI, which would require supporting
arbitrary tag size, we focus on providing isolation, i.e., using a
one-bit tag to indicate the trustworthiness of the writer. Using
the same example, HDFI can be utilized to prevent the attack
by (1) using a new instruction sdset1 (store and set tag) to
set the tag of memory used to store return address to 1 (line
3); and (2) when loading the return address from memory for
function return, using another instruction ldchk1 (load and
check tag) to check if the memory tag is still 1. Since normal
store instructions (e.g., sd) would set the tag to 0, if attackers
try to overwrite the return address, the ldchk1 instruction would
fail and generate a memory exception.

B. Tag-based Memory Protection

Tag-based memory protection is not new and has been
explored in many previous works. For example, lowRISC [8]
uses a 2-bit tag to specify if a memory address is readable and
writable. Loki [84] also allows developers to specify permission
with a memory address, but is more flexible, as the permission is
related to the current protection domain. The problem with these
approaches (including the Mondriaan protection model [79]) is
that, although the objects (memory addresses) are fine-grained,
the subjects are still coarse-grained—the access permissions are
applied to the whole program or the whole protection domain.
However, the subjects are individual instructions in HDFI.

An alternative approach is to associate the access permission
with pointers instead of memory locations. For example,
Watchdog [51] and the application data integrity (ADI) [57]
mechanism on SPARC M7 processors allow a program to
associate memory addresses and pointers with versions (tags)
and require that when accessing the memory the version of
the pointer must match the version of the memory. The tricky

3



Various applications
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Implementations

• Hardware 
• RISC-V RocketCore generator: 2198 LoC 
• Instantiated on Xilinx Zynq ZC706 FPGA board 

• Software (RISC-V toolchain) 
• Assembler gas: 16 LoC 
• Kernel modifications: 60 LoC 
• Security applications: 170 LoC
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Effectiveness of optimizations

• Memory bandwidth and latency

Benchmark Tag Cache +TVB +MTT +TVB+MTT

L1 hit 0% 0% 0% 0%
L1 miss 14.47% 5.26% 14.47% 5.26%
Copy 13.14% 4.44% 11.84% 4.26%

Scale 10.62% 4.79% 9.45% 4.67%

Add 4.37% 1.26% 4.13% 1.2%
Triad 9.66% 1.96% 8.8% 1.83%

Benchmark Tag Cache +TVB +MTT +TVB+MTT

164.gzip 16.09% 2.18% 6.85% 1.87%
175.vpr 29.51% 3.26% 7.71% 1.43%
181.mcf 36.89% 3.08% 13.66% -0.11%

197.parser 16.11% 2.27% 7.61% 1.53%

254.gap 12.19% 1.04% 6.53% 0.71%
256.bzip2 14.52% 2.65% 3.63% 0.84%
300.twolf 26.71% 2.97% 7.37% 0.36%

• SPEC CINT2000

14



Security experiments

• With synthesized attacks
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Benchmark Type Baseline Tagger TVB MTT TVB+MTT

164.gzip Read 590M 799M (35.25%) 606M (2.71%) 589M (�0.17%) 588M (�0.34%)
Write 380M 1,217M (220.26%) 453M (19.21%) 1,017M (167.63%) 378M (�0.53%)

175.vpr Read 9,816M 17,200M (75.15%) 10,930M (11.35%) 9,760M (�0.57%) 9,792M (�0.25%)
Write 7,908M 37,480M (373.83%) 12,420M (57.06%) 31,890M (303.16%) 7905M (0%)

181.mcf Read 9,778M 14,310M (46.35%) 10,503M (7.41%) 9,778M (0%) 9,778M (0%)
Write 5,588M 23,720M (324.33%) 8,490M (1.11%) 20,300M (263.15%) 5,588M (0%)

197.parser Read 12,770M 17,610M (37.9%) 13,220M (3.52%) 12,850M (0.63%) 12777M (0.01%)
Write 8,290M 27,490M (231.6%) 9,640M (16.28%) 24,440M (194.81%) 8299M (0.11%)

254.gap Read 2,233M 2,872M (28.61%) 2,239M (0.27%) 2,225M (0%) 2,206M (�1.21%)
Write 1,594M 4,237M (165.81%) 1,701M (6.71%) 3,926M (146.3%) 1,592M (�0.13%)

256.bzip2 Read 228M 390M (71.05%) 268M (17.54%) 229M (0.44%) 229M (0.44%)
Write 249M 896M (259.84%) 407M (63.45%) 730M (193.17%) 249M (0%)

300.twolf Read 13,600M 22,350M (64.34%) 15,820M (16.32%) 13,600M (0%) 13,610M (0%)
Write 13,680M 48,650M (255.63%) 22,510M (64.55%) 38,090M (178.43%) 13,610M (�0.51%)

TABLE VI: The number of total memory read/write access from both the processor and DFITAGGER.

Mechanism Attacks Result

Shadow stack RIPE X
Heap metadata protection Heap exploit X
VTable protection VTable hijacking X
Code pointer separation (CPS) RIPE X
Code pointer separation (CPS) Format string exploit X
Kernel protection Privilege escalation X
Private key leak prevention Heartbleed X

TABLE VII: Security applications utilizing HDFI can effectively
prevent various attacks including Heartbleed (CVE-2014-0160).

IV Usability: HDFI should be flexible, capable of supporting
different security solutions; it should also be easy to use, so
as to increase the chance of real-world adoption.
In this subsection, we evaluate whether HDFI achieves these

design goals or not. As described in §V, none of the HDFI-
powered security applications requires data shadowing, includ-
ing three solutions (stack protection, CPS and Kenali) whose
previous implementations rely heavily on data shadowing. For
this reason, we consider HDFI to have achieved goal III. And
as shown in Table III, implementing/porting security solutions
with HDFI is very easy, so we consider goal IV to be achieved
as well. Next, we analyze the security and efficiency benefit.

1) Security Improvement: Compare with software-based
shadow stacks [21], our stack protection provides better security
than platforms that do not have efficient isolation mechanisms,
such as x86_64 and ARM64. Compared with existing hardware-
based shadow stacks [46, 59, 81], our solution provides the
same security guarantee but is more flexible and supports kernel
stack. Compared to active callsite based solutions [23, 24], our
stack protection provide better security. For standard libraries,
existing heap metadata integrity checks can be bypassed under
certain conditions. For example, Google project zero team
has successfully compromised ptmalloc with NULL off-by-
one [31]; and existing encryption-based exit handler protection
is vulnerable to information leak based attacks. However, Our
HDFI-based library enhancement cannot be bypassed because
attackers cannot control the hardware-managed tags. Compared
with existing VTable protection mechanisms [7, 38, 71, 85, 86],
our HDFI-based solution has both advantages and limitations.
On the positive side, our approach makes it much harder to
overwrite the vfptr; while in all other solutions, attackers can

easily tamper with vfptr. However, because our approach does
not involve any class hierarchy analysis, we cannot guarantee
type safety (i.e., semantic correctness). Compared to the original
CPS implementation, our ported version provides the same
security guarantee as segment-based isolation but is stronger
than its randomization-based isolation, which has been proven
to be vulnerable [32]. Compared to the original implementation
of Kenali [66], our ported version provides stronger guarantees
than its randomization-based stack. Based on the above analysis,
we also consider HDFI to achieve goal I.

2) Performance Improvement: Because we can neither fully
port the original implementation of CPS and Kenali to our
testbed due to problems with the official llvm-riscv toolchain
nor run the C++ benchmarks of SPEC CINT 2000, we
designed the following benchmarks to evaluate the performance
improvement of HDFI-based security solutions.

Micro benchmarks. Compared with the original implementa-
tion of CPS, our ported version would be more efficient because
it does not need to access the shadow data. To demonstrate this
benefit, we implemented a micro benchmark that measures the
overhead for performing an indirect call for 1,000 times. To
simulate CPS, we used their own hash table implementation
and performed the same look up before the indirect call. For
our implementation, we just replaced the load instruction with
a checked load. Note, although our implementation sounds
simpler, it provides the same level of security guarantee as
the original segment-based CPS implementation. The result
showed that our protection only incurs 1.6% overhead, whereas
the hash table lookup incurred 971.8% overhead. Note, this
micro benchmark only shows the worst case performance of
both approaches. Depending on the running application, the
real end-user performance impacts could be much less than
this.

Because we cannot perform automated instrumentation to
fully replicate Kenali, here we only measured the performance
overhead of kernel stack protection. The result is shown
in Table VIII. Although our prototype implementation has
higher a performance overhead, it is also more secure than
the randomization-based stack protection used in the original
implementation.
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Impacts on security solutions

• Security 
• Hardware-enforced isolation 

• Simplicity 
• No data shadowing 

• Usability 
• Implementation/port is very easy

16

Application Language LoC

Shadow Stack C++ (LLVM 3.3) 4
VTable Protection C++ (LLVM 3.3) 40

CPS C++ (LLVM 3.3) 41

Kernel Protection C (Linux 3.14.41) 70

Library Protection C (glibc 2.22) 10

Heartbleed Prevention C (OpenSSL 1.0.1a) 2



Impacts on security solutions (cont.)

• Efficiency 
• GCC (-O2) 
• Clang (-O0)

Benchmark Shadow stack (GCC) SS+CPS (Clang)

164.gzip 1.12% 2.42%

181.mcf 1.76% 3.54%

254.gap 3.34% 13.23%

256.bzip2 3.05% 4.61%
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Security analysis

• Attack surface 
• Inaccuracy of data-flow analysis 
• Deputy attacks 

• Best practice  
• CFI is necessary (e.g., CPS + shadow stack) 
• Recursive protection of pointers 
• Guarantee the trustworthiness of the written value 
• Use runtime memory safety technique to compensate inaccuracy of static analysis
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Q & A 
 

Thank you!
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