
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is

sponsored by USENIX.

DoLTEst: In-depth Downlink Negative Testing
Framework for LTE Devices

CheolJun Park, Sangwook Bae, BeomSeok Oh, Jiho Lee, Eunkyu Lee, Insu Yun,
and Yongdae Kim, Korea Advanced Institute of Science and Technology (KAIST)

https://www.usenix.org/conference/usenixsecurity22/presentation/park-cheoljun

DoLTEst: In-depth Downlink Negative Testing Framework for LTE Devices

CheolJun Park∗, Sangwook Bae∗, BeomSeok Oh, Jiho Lee, Eunkyu Lee, Insu Yun, and Yongdae Kim
Korea Advanced Institute of Science and Technology (KAIST)

{fermioncj, hoops, beomseoko, jiholee, ekleez, insuyun, yongdaek}@kaist.ac.kr

Abstract
An implementation flaw in LTE control plane protocols at

end-user devices directly leads to severe security threats. In
order to uncover these flaws, conducting negative testing is a
promising approach, whose test case only contains invalid or
prohibited messages. Despite its importance, the cellular stan-
dard mostly focuses on positive test cases, producing many
implementation vulnerabilities unchecked, as evidenced by
many existing vulnerabilities. To fill this gap, we present
DOLTEST, a negative testing framework, which can compre-
hensively test an end-user device. Enumerable test cases with
a deterministic oracle produced from detailed specification
analysis make it suitable to be used as a standard to find imple-
mentation vulnerabilities. We uncovered 26 implementation
flaws from 43 devices from 5 different baseband manufactur-
ers by using DOLTEST, demonstrating its effectiveness.

1 Introduction
Despite the passage of 13 years since the first release, long-
term evolution (LTE) remains the dominant protocol over
the newly implemented 5G network. Recent reports show
nearly 6 billion LTE subscriptions worldwide, whereas 5G
subscriptions only exceed 0.4 billion [20, 25]. Additionally,
most 5G-capable devices still support the LTE protocol, owing
to backward compatibility needs and slow 5G standalone
(SA) mode deployment, compared to non-standalone (NSA)
mode [26].

LTE security remains critical because it provides privacy-
sensitive data plane services, such as voice calling, short mes-
sage services (SMS), and internet access. For these data plane
services to work efficiently and safely, the LTE control plane
supports basic control operations, such as security control,
mobility management, and authentication. Thus, any insecuri-
ties related to the control plane can affect the confidentiality,
integrity, and availability in the data plane.

For LTE security, discovering implementation vulnerabil-
ities is as important as eliminating standard (design) vul-

∗These two authors equally contributed.

nerabilities. Even though researchers have uncovered sub-
stantial design flaws in the LTE control plane [17, 29, 30,
32, 36, 38, 40, 41, 49, 51–53], it does not necessarily lead
to secure implementations. Implementation vulnerabilities
have been continuously reported, including memory corrup-
tions [22, 34, 42, 43] and non standard-compliant vulnerabil-
ities [16, 27, 36, 43, 46, 48, 50]. Although the former mainly
originates from development mistakes, the latter involves the
nature of the LTE standard document (specification); it is
written in a natural language rather than a formal language,
resulting in several ambiguities. Exacerbating the issue, the
specification only provides positive testing specifications (i.e.,
conformance test suites [8, 9]) that mostly verify positive
cases to see if valid messages are correctly handled. In other
words, the conformance test mostly ignores "negative test-
ing", which examines if invalid or prohibited messages are
appropriately handled. Thus, this may leave many implemen-
tation vulnerabilities unchecked.

For this reason, previous studies have attempted several
approaches to uncover implementation vulnerabilities. Earlier
works focused on a few prohibited messages to check whether
devices drop these messages via manual testing [45,52]. Rup-
precht et al. [48] proposed the first testing framework to deter-
mine whether prohibited algorithms can be selected in devices.
LTEFuzz [36] presented the security testing system that ex-
amines the message authentication logic for various control
plane messages in UEs and network equipment. Despite their
successes in discovering implementation vulnerabilities, pre-
vious works still fail to comprehensively cover negative cases
that are explicitly prohibited by specification. This is because
they rely on only a small part of specification. We believe that
manual, yet detailed efforts to understand the specification
are unavoidable because the specification, written in informal
and ambiguous forms, represents 13 years of LTE history,
including endless discussions among 3GPP representatives.

In this paper, we propose DOLTEST, a negative testing
framework for LTE, which can comprehensively test a user
equipment (UE) (i.e., devices) based on specification. Unlike
other works, it supports an enumerable number of test cases

USENIX Association 31st USENIX Security Symposium 1325

with a deterministic oracle that describe standard-compliant
behaviors for each negative test case. Our approach inherently
involves a significant amount of manual efforts to analyze
the specification to find implementation flaws that are not
compliant with it.

Despite our best efforts, it is nearly impossible to fully
understand the specification due to its ambiguities and high
complexity. To address this issue, DOLTEST uses the fol-
lowing approaches. First, we re-define UE states based on
a security context, which changes UE’s protocol flows. Sec-
ond, with respect to this new definition, we generate a guide-
line by carefully analyzing the specification. The guideline
is a manually-written rule that specifies message types and
contents to generate negative test cases. To tame ambigui-
ties in the specification, DOLTEST generates test cases over-
approximately from the guideline. We then run negative test-
ing with our initial test cases against various UEs (i.e., 43
UEs). Our basic expectation is that every test case should
be silently dropped because the guideline is designed to pro-
duce only negative cases. If any UE does not silently drop a
certain case, we re-check the specification and even discuss
with a 3GPP representative to confirm a standard-compliant
behavior. As a result, we can refine these over-approximated
test cases to obtain enumerable negative test cases with the
deterministic oracle. Such a procedure for building test cases
and oracle is labor-intensive; however, this is a one-time cost,
and other implementations can easily adopt DOLTEST with-
out re-spending such efforts that we already put. Finally, we
hope that our test suite could be standardized to fill the gap of
negative testing in conformance specification.

Using DOLTEST, we tested 43 cellular devices (from seven
device manufacturers that use baseband processors from the
top five major baseband manufacturers). We generated a total
of 1,848 test messages considering the abstracted UE states.
Via manual root cause analysis, we found 26 implementation
flaws, of which 22 were not previously reported. These im-
plementation flaws can directly lead to critical vulnerabilities
such as eavesdropping, authentication bypass, or informa-
tion leakage. We validated attack scenarios by exploiting the
above vulnerabilities, including network identity & time zone
spoofing, SMS injection, and traffic eavesdropping.

We also discuss our experience analyzing ambiguities in
specifications. First, we show a few cases, from which we
were not able to define the standard-compliant behavior even
from the specification. We report our discussion on three
ambiguity issues with a representative from 3GPP. Second, we
report a few example cases, where the specification does not
clearly define the UE’s behavior, leading to deviant behaviors
among our test UEs. Later, we show how such behavior can
be used to fingerprint baseband chipsets. Finally, considering
the size of the specification, one may think that the use of
NLP (Natural Language Process) could be useful to solve
our problem. We discuss why this could be challenging, even
with the recent progress in NLP technologies.

eNB EPCUE
Downlink

Uplink

MME HSS

IP
NAS

RRC

Layer 2
(MAC)

Layer 1
(PHY)

AP

BP

Control plane

Data plane

S-GW P-GW Internet

IMS
network

Figure 1: LTE network architecture

Contributions. DOLTEST is the first comprehensive neg-
ative testing framework for LTE downlink implementa-
tions to find non standard-compliant vulnerabilities in UEs.
DOLTEST supports an enumerable number of test cases with
a deterministic oracle that describes standard-compliant be-
haviors for each negative test case through the manual analysis
on the specifications of NAS and RRC. Using a total of 1,848
test cases, we tested 43 cellular devices spanning 5 major
baseband manufacturers to uncover 26 implementation flaws,
including 22 previously unknown ones. Furthermore, we dis-
cuss our experience analyzing ambiguities in the specification
in detail.
Scope. DOLTEST focuses on finding implementation vulnera-
bilities for downlink message processing in UEs. In particular,
DOLTEST aims at finding non standard-compliant bugs for
message authentication, without considering standard vulnera-
bilities or memory corruptions. DOLTEST focuses on control
plane messages in LTE (i.e., NAS and RRC). DOLTEST also
adopts generic adversarial models of LTE network, which
have no knowledge of cryptographic keys to bypass integrity
checks in LTE.
Responsible Disclosure. We have responsibly disclosed all
vulnerabilities that we found. We reported each to the corre-
sponding (device and baseband) manufacturer since 2019 and
are actively working with them for patching.
Availability. DOLTEST is publicly available on https://
github.com/SysSec-KAIST/DoLTEst.

2 Background

2.1 LTE Network Architecture
The LTE network comprises three components: a UE, evolved
Node B (eNB), and evolved packet core (EPC) (see Fig. 1).
UE refers to any device located at the edge of a cellular net-
work that provides voice and data cellular services to end-
users. It embeds an application processor (AP) that handles
the operating system and application services, and a baseband
processor (BP) that is responsible for mobile communications,
including radio/digital signal processing, identity manage-
ment, cryptographic protection, and network authentication.
eNB provides a wireless connection between the UE and the
EPC as a base station. Furthermore, for secure and reliable
cellular service, it manages radio resources and wireless con-
nections while offering confidentiality and integrity protection
to control plane messages and user plane data for each UE
using a dedicated Radio Resource Control (RRC) protocol.
EPC comprises a mobility management entity (MME) for

1326 31st USENIX Security Symposium USENIX Association

https://github.com/SysSec-KAIST/DoLTEst
https://github.com/SysSec-KAIST/DoLTEst

RRC Connection setup Complete + NAS Attach Request

RRC SecurityModeCommand – Complete

UE eNB EPC

Security Protected

NAS Authentication request - response
NAS Security mode command - complete

NAS Attach accept – complete + EPS bearer activation

RRC ConnectionRequest - Setup

Normal Cellular Service

NAS Identity request

NAS Identity request (IMEI) - response

6 0 e 2 1 3 2 01 7 0 5 0 7 5 5 0 2

Identity
request IMEISeq. #EMM

Integrity protected
MAC

~~ ~~~~

EMM
Plain NAS message

Message typeSecurity Component IE/value

NAS Identity request (IMSI)- response

Figure 2: LTE control plane procedure and message structure

user authentication and key/session/identity management,
gateways (GW) for managing IP data traffic, and a home
subscriber server (HSS) for storing the authentication infor-
mation of the mobile subscribers (e.g., international mobile
subscriber identity (IMSI) and international mobile station
equipment identity (IMEI)). In particular, the MME communi-
cates with the UE via the non-access-stratum (NAS) protocol.

2.2 Control Plane Operation
Attach procedure. The ATTACH procedure is the mandatory
initial process for a UE to use cellular services when it is
powered on or returns from airplane mode. The ATTACH pro-
cedure comprises several NAS and RRC procedures (Fig. 2).
Initially, the UE establishes a radio connection with an eNB
by exchanging RRC Connection Request-Setup messages. Sec-
ondly, the MME and UE establish the NAS security context
by performing the EMM common procedures (i.e., identifi-
cation, authentication, and security mode control). Note that
these procedures are initiated by the MME. In the identifica-
tion procedure, the MME asks the UE to send its identifier
by exchanging Identity Request-Response messages. In the au-
thentication and key agreement (AKA) procedure, the UE
and the MME mutually authenticate each other by exchang-
ing Authentication Request-Response. The MME then negoti-
ates the security algorithms used for encryption and integrity
protection by exchanging NAS Security Mode Command-Complete.
After establishing a security context, NAS messages are en-
crypted and integrity protected. Thereafter, the eNB and
the UE establish the RRC security context by exchanging
RRC SecurityModeCommand-Complete. Finally, the MME sends an
Attach Accept message to inform that the Attach Request is
accepted. This involves the Evolved Packet System (EPS)
bearer activation, which is required for the data plane service.
After the UE replies with Attach complete message, the ATTACH

procedure completes.
Control plane message structure. Control plane messages
comprise three parts: message types, information elements
(IEs), and security components. Each message type has
its own functional purposes within the control plane pro-
cedure. For example, an Identity Request message type is
used by the NAS identification procedure, and the RRC

FBS attacker MitM attacker Signal injection attacker

Figure 3: Threat models in LTE

UEInformationRequest message type is sent by eNB to request
UE reports. Depending on the message type, a message can
contain a single IE or multiple IEs. IEs carry certain values
according to the defined length and the value type. When the
message is constructed, it is encapsulated by security com-
ponents that are used for integrity protection and encryption.
These include a security header type, a message authenti-
cation code (MAC), and a sequence number. The security
header type defines the level of protection in accordance with
the following values: 0–no security protection, 1–integrity
protected, and 2–Integrity protected and ciphered.1 Note that
messages having security header type 0 are referred to as plain,
unprotected, or unauthenticated messages, whereas messages
having other security header types (1-5) are referred to as
protected or authenticated if they have a valid MAC. The mes-
sage in Fig. 2 shows the message type as 0x55 indicating that
this is an Identity Request, and the IE value as 0x02 meaning
that the requested identity type is IMEI. Because the security
header type has a value of 1, the message contains a MAC
and sequence number to provide integrity protection.

2.3 Attack Models for UE in LTE
There are three representative active attack models in LTE net-
work: Fake base station (FBS), Man-in-the-Middle (MitM),
and signal injection Fig. 3. Because the adversaries in all
three threat models have no valid cryptographic key of the
victim, they can craft only plain messages or messages with a
wrong MAC value. However, since the FBS attacker cannot
help a UE to establish the security context with the network,
it can send messages to the victim UE only before AKA pro-
cedure, whereas MitM and signal injection attacker can send
messages even after AKA procedure. The operational logics
of the attack models are detailed in App. A.

3 Problems of Prior Negative Testing
3.1 Lack of Negative Testing in Specification
Currently, conformance specification [8] is used to test UE im-
plementations. This specification focuses on UE’s correct be-
haviors; the UE handles valid control plane messages properly.
This mainly entails positive testing to handle non-erroneous
cases. Unfortunately, the specification rarely includes invalid
or prohibited messages (i.e., negative testing) although these
messages are crucial for security. For example, if the UE
blindly accepts messages without authentication, it can lead to
serious attacks such as impersonation or information leakage.
Therefore, it is important to test whether a UE successfully

1Security header type values 3, 4, 5, and 12 are dedicated for certain
message types [4].

USENIX Association 31st USENIX Security Symposium 1327

drops such invalid messages related to security.
To demonstrate that the existing conformance specification

has insufficient negative cases for security, we count the num-
ber of test scenarios that explicitly define the corresponding
action to the message having prohibited IE/value or the mes-
sage without integrity protection in the current conformance
specification [8, 9]. We examined the specification of version
15.5.0. Among 993 test scenarios, we found that only 14 nega-
tive test cases; 3 and 11 cases are related to RRC and NAS, re-
spectively. Even worse, the existing test scenarios only cover
limited message types. For example, in RRC, the conformance
testing covers only two message types for security. These sce-
narios check whether 1) the UE uses a correct security algo-
rithm for integrity check and encryption (SecurityModeCommand)
and 2) the UE discards the UECapabilityEnquiry message that
has an invalid MAC. Moreover, these test scenarios fail to
cover 1) unsafe behaviors explicitly prohibited by the specifi-
cation, and 2) known implementation vulnerabilities reported
by previous works [36, 45, 48, 52].

3.2 Limitations of Previous Works
Although there have been various approaches [36, 45, 48, 52]
for negative testing to discover vulnerabilities in UE imple-
mentation, they all have the following limitations.
(1) Stateless testing. Existing works only consider limited
states in LTE network. In particular, they only consider states
where the FBS attacker has a chance to transmit the adver-
sarial messages to the UE (i.e., before establishing a security
context). However, recent works have shown successful at-
tack scenarios using new threat models, such as MitM [49,53]
and signal injection [59]. Such attackers are more powerful
to transmit adversarial control plane messages even after the
UE establishes its security context. Considering that the UE’s
operation is stateful, and the advanced threat model can send
message at any state of UE, stateful negative testing is re-
quired. Unfortunately, existing techniques fail to reflect such
powerful attackers in their negative testing.
(2) Limited coverage in negative messages. Existing works
only focus on limited components in building negative mes-
sages. Remember that the control plane message consists of
three parts: message type, IEs, and security components.Due
to its large search space, the state-of-the-art tool, LTEFuzz,
decides to mutate its IEs by randomly substituting values
from commercial network logs. This approach is effective
to avoid nonsense values that will be early-rejected. How-
ever, these real-world logs are network-dependent; they never
contain prohibited messages or rarely include infrequently
used messages by the network. For example, Security Mode

Command messages in commercial networks never contain the
security algorithms, EIA4–EIA7, whose behaviors are unde-
fined and reserved for future extension. In addition, it would
hardly contain the prohibited security algorithm, EIA0 (null
integrity). Both cases are important to discover an integrity
bypass vulnerability [48]. Unfortunately, LTEFuzz fails to

explore messages that ordinary networks would not transmit.

4 Overview
4.1 Goals
The main goal of DOLTEST is to build a negative testing
framework that 1) can test a UE comprehensively based on
specification 2) using deterministic oracle that can interpret
test results against 3) enumerable test cases. We hope that our
test framework could be standardized to complement the lack
of negative testing in conformance specifications.
Comprehensive testing. DOLTEST should have comprehen-
sive test cases, to thoroughly examine the prohibited or invalid
situations that the UE can encounter. To this end, it needs to
consider both states and test messages simultaneously because
each message’s behavior depends on the current state of the
UE. Moreover, unlike other works, DOLTEST should con-
sider every part of message components: message type, IE,
and security components. It enables DOLTEST to reflect the
most powerful adversary from the Dolev-Yao model [19]; the
adversary can overhear, intercept, and synthesize any message
and is only limited that she has no valid cryptographic key
of the victim. This includes all existing attacks in a cellular
network such as FBS, MitM, and signal injection.
Deterministic oracle. DOLTEST should support determin-
istic oracle for each test case to device which behavior is
standard-compliant. This is essential for a standardizable test
suite to understand the correct behavior for the test case with-
out any exception.
Enumerable test cases. Finally, we want DOLTEST to gen-
erate only an enumerable number of test cases. This property
allows developers to efficiently test their implementations and
to easily understand the root causes of discovered bugs. Thus,
DOLTEST is desired to choose the significant ones among
nearly infinitely many candidates for negative test cases.

4.2 Challenges in Negative Testing
To achieve the previously mentioned goals, we need to address
the following challenges.
C1: Security-irrelevant state definition in specification.
To fully evaluate a UE’s security, negative testing should
consider its various states; however, existing definitions of
states are improper for security testing. In particular, the ex-
isting specification explicitly defines REGISTERED/DEREGISTERED

and IDLE/CONNECTED states for NAS and RRC, respectively. Un-
fortunately, these definitions only describe UE connectivity
without considering their security contexts. Moreover, speci-
fications also describe implicit states to differentiate UE’s be-
havior based on security contexts. For instance, a UE should
not reply to an Identity Request that asks for IMEI before
the security activation, implying implicit states. However, be-
cause of this implicitness, manufacturers implement these
states arbitrarily as long as they can pass conformance test
specifications. In a nutshell, existing definitions of both ex-
plicit and implicit states make negative testing hard to 1)
enumerate test cases for stateful security testing, and 2) test

1328 31st USENIX Security Symposium USENIX Association

Security context
based abstraction

Abstracted state

Specification
document

Diverged
UE state

Manual specification analysis

Spec.Test case generation
guideline Test UE

EPC

Te
st

 M
es

sa
ge

Re
sp

on
se Refinement

Preliminary Oracle
eNB

Specification
analysis

Target
state

Test
case Implementation

flaw analysis

Implication
analysis

Over-the-Air testing

Test case,
Response

(EPC,eNB
log)

UE’s
internal
logs

Deterministic oracle building
Manual

post-analysisTest case generation

Msg types
Statements

Rule

IE/value
Sec.comp.

State: No-SC
Sec.hdr: 0 (no integrity ..)

Over-approximated
test cases

Msg Type: Identity Req
IE : Identity Type 2
Value : 0 (reserved)
MAC : plain

Deviant
Behavior

①

②

③ ④

Deterministic
Oracle

Test cases

3GPPPreliminary
test cases

Preliminary
test cases

⑤ ⑥

Figure 4: Overview of DOLTEST

multiple UEs regardless of their underlying implementations.
C2: Non-enumerable negative cases. It is infeasible to test
all possible negative cases because there can be an enormous
number of different LTE messages. In particular, the RRC
and NAS have 118 message types, and each message has cor-
responding optional IEs with their values, whose numbers are
more than a thousand. Therefore, considering all components
— message types, IEs and values — they comprise a huge
number of combinations. Note that the number of candidates
becomes even larger if we perform stateful testing.

Meanwhile, each trial for negative testing in UEs is expen-
sive. Due to the nature of over-the-air testing, it is hard to
send a large number of test messages. Also, when UE fails
the attach procedure multiple times within a certain period, it
disconnects from the test network and suspends reconnection
for a few seconds. Note that such a case frequently happens
in the negative testing because it can interfere the normal
attach procedure due to their abnormal cases. Thus, we need
to carefully select only essential cases for negative testing.
C3: Ambiguities in complicate specification. It is difficult
to determine the UE’s correct behavior when receiving each
test case, even if we can enumerate all negative test cases.
This is mainly because the specification has many ambigu-
ous statements and descriptions of the operations are spread
over multiple documents, each of which are several hundred
pages long. For each test case, the oracle needs to determine
implementation correctness based on the corresponding be-
havior. However, we found that specification ambiguously
describes whether the test case is actually prohibited or in-
valid (§6.2). Additionally, the statements regarding a single
control procedure are defined at different places over multiple
documents. This makes developers misunderstand the specifi-
cation even with their best efforts. Therefore, building oracle
based solely on the specification is challenging, considering
the ambiguities and the size of the specifications.

4.3 Our Approach
A1: Defining security abstracted states. To address C1, we
abstract the implicit states relevant to security based on the
specification. In particular, we focus on parts in specification
that define the actions of the UE depending on its authenti-
cated states. Our key intuition comes from the fact that the
specification defines the acceptance of control plane messages
depending on the existence of a security context. Thus, the

four abstracted states are categorized by the existence of se-
curity context in RRC and NAS. Note that these states are
implementation-independent and are fully controllable at the
network, meaning that we can use this definition for negative
testing regardless of the underlying UE implementations.
A2: Specification-driven test message generation. To re-
duce the huge search space in negative testing, DOLTEST
generates test cases based on the specification, which includes
every essential point for negative cases. However, it is nearly
impossible to completely understand the specification due
to its size and complexity. To address this, we first extract
guidelines from the specification by carefully analyzing it,
and DOLTEST over-approximately generates test cases based
on the guidelines.
A3: Building deterministic oracle. We first assume that
negative test messages from DOLTEST should be silently
dropped. Then, we validate this by evaluating each message
to an extensive set of devices (see Tab. 6). If we discover
deviant behaviors from our assumption, we double-check the
specification to refine the initial oracle (§5.4). It is worth not-
ing that this refinement is possible since DOLTEST only has
an enumerable set of test cases.

5 Design
Fig. 4 illustrates the workflow of DOLTEST. Remember that
DOLTEST aims at constructing negative test cases with de-
terministic oracle. To this end, DOLTEST performs the fol-
lowing six steps. 1 First, we redefine the existing implicit
UE states as security abstracted states for negative testing
(§5.1). 2 With this new state definition, we construct rules
for test case generation, called guidelines, by carefully analyz-
ing the specification (§5.2.2). 3 Then, DOLTEST generates
test cases according to the guidelines. To address ambiguities
in the specification, DOLTEST enumerates test cases in an
over-approximated manner (§5.2.3). 4 DOLTEST conducts
preliminary over-the-air testing using the over-approximated
test cases. For testing, DOLTEST uses its test EPC/eNB for
transmitting a test message to a UE at a specific state. Through
the testing, DOLTEST collects the outputs (e.g., responses and
a UE’s internal logs) for each test UE. Using these outputs,
DOLTEST checks whether the test UE shows deviant behav-
iors (§5.3). 5 DOLTEST refines its preliminary test cases and
oracle. If a UE shows a deviant behavior in the preliminary
testing, we re-check the specification and even discuss with a

USENIX Association 31st USENIX Security Symposium 1329

Attach Request

NAS Authentication Request

NAS Security Mode Command

RRC Security Mode Command

RRC Connection
Reconfiguration

NAS Attach Accept

REGISTERED

EMM Information

Downlink NAS Transport

RRC Connection Release

RRC Connection
Reestablishment

NAS Attach Reject

NAS GUTI Reallocation

RRC UE capability Enquiry

NAS Identity Request

NAS Identity Request

RRC ueInformation Request

Service RequestTAU Request

No-SC

N-SC

NR-SC

REGI

: START : END : NAS : RRC

Figure 5: An abbreviated state machine and security ab-
stracted states for RRC and NAS protocol

representative from 3GPP to understand a standard-compliant
behavior. 6 If this behavior is not buggy, we modify our
oracle or eliminate non-negative test cases from our over-
approximated set (§5.4). Otherwise, we manually analyze this
implementation flaw (§6) and its implications (§7). After this
refinement process, DOLTEST can finally obtain negative test
cases with deterministic oracle.

5.1 Security Abstracted States
We redefine states in the LTE network for negative testing
based on the presence of NAS and RRC security contexts:
NO-SC, N-SC, NR-SC, and REGI. As shown in Fig. 5, one
can define a UE’s state machine using control plane messages
from the network (left side). However, this representation
can incur a state explosion if we assume that a UE can re-
ceive an arbitrary message in any state. Note that this is a
valid assumption in adversarial settings. Moreover, this state
machine is independent of the existence of security contexts.
Thus, DOLTEST newly defines a UE’s state based on security
contexts (right side in Fig. 5). This security abstracted state
allows DOLTEST to explore different authentication logic,
which is changed by the existence of security contexts. In the
following, we discuss each state in our new definition.
• NO-SC: In this state, only an initial radio connection is

established between the UE and eNB without any security
context. Therefore, all control plane messages in this state
remain unprotected.

• N-SC: After completing the AKA procedure, a UE enters
this state, and the NAS security context is established. In
this state, all the NAS messages exchanged between them
are protected. However, RRC messages are still unprotected
because the RRC security context is not yet established.

• NR-SC: The UE enters this state after RRC security con-
text is established alongside the NAS security context. Thus,
all RRC and NAS messages are protected in this state. No-
tably, an FBS attacker cannot attack a UE in this state, as
she cannot help the UE to establish the security context
with the network.

• REGI: The UE finally enters this state when it completes
the entire registration process with the LTE network. This
state is the same with REGISTERED state defined in the speci-

Table 1: Abstracted states
NO-SC N-SC NR-SC REGI

NAS security context 7 3 3 3
RRC security context 7 7 3 3

ATTACH accomplishment 7 7 7 3
Reflected Threat model F, M, I F, M, I M, I M, I
∗ F: FBS, M: MitM, I: Signal Injection

fication. A UE in this state is successfully established as a
data bearer (EPS bearer); hence, it can use cellular services
such as calling, and data services.

Compared to the existing explicit or implicit state definition,
this new definition entails the following properties:
Security-oriented. These abstracted states reflect the nature
of LTE security, where the existence of different security
contexts allows different authentication logic for control plane
messages. To comprehensively evaluate such logic, our first
three states (i.e., NO-SC, N-SC, and NR-SC) reflect the
implicitly-defined states of NAS/RRC with various security
contexts. We further consider the state, REGI, to reflect the
explicit state, REGISTERED, in the specification. Although it
has the same security contexts with NR-SC, it is reasonable
to consider REGI specially because it has unique behaviors
for certain messages defined by the specification. Tab. 1 shows
how each threat model is associated with the abstracted states.
Implementation agnostic. This new definition for abstracted
states helps us to accomplish implementation-agnostic testing.
As these states reflect fundamental authentication procedures
for LTE, we can explicitly control transitions between states
by following standardized LTE authentication steps. For in-
stance, we can change a UE’s state from N-SC to NR-SC by
sending an RRC SecurityModeCommand message from our testing
network. Therefore, DOLTEST enables stateful testing for
multiple devices regardless of implementation (§5.3).

5.2 Specification-driven Message Generation
DOLTEST generates test messages that are invalid or prohib-
ited by specification in a selective yet approximated manner.
Basically, our approach is best-effort; as shown in Fig. 4, we
first carefully analyze specifications to build a rule for test
case generation, called a guideline.

5.2.1 Manual Specification Analysis

We manually read the entire RRC and NAS specification to
create guidelines. In particular, we focused on statements re-
lated with message authentication, because DOLTEST aims
at discovering security issues in LTE (please see our GitHub
repository for the representative statements used to make
guidelines [55]). However, these statements are not solely suf-
ficient; we also need to refer to other parts of the specification
to create guidelines (e.g., need to understand corresponding
IEs for messages).

To review our analysis, we leverage two auxiliary methods.
First, we rechecked the paragraphs around the security-critical
words — ‘shall not’, ‘security activation’, and ‘integrity pro-

1330 31st USENIX Security Symposium USENIX Association

tection’ —. These words are essential to describe message
authentication, which DOLTEST focuses on. Second, we com-
pared different versions of the specification. This is based on
our intuitions that 1) revision could happen due to security
patches, and 2) new features are likely to have flaws during
implementing them.

Despite our best efforts, it is nearly impossible to com-
pletely understand the specification. Therefore, the guide-
line allows to specify ambiguities, and DOLTEST generates
test cases by over-approximately interpreting such ambigu-
ities. This over-approximation often leads to include excep-
tions in its test cases (i.e., non-negative test cases); therefore,
DOLTEST re-validates these cases while constructing the or-
acle (§5.4). Unfortunately, DOLTEST still cannot guarantee
any completeness, which will be discussed in §8.

5.2.2 Guideline generation

We carefully analyze the specification and make guidelines for
negative test case generation. The guidelines are handcrafted
rules for test case generation that include every component
for test cases, which consist of message type, IE and its val-
ues, security components (security header type and MAC),
and states. To address ambiguities in the specification, the
guideline allows to specify a wildcard for the component that
specifies arbitrary value. This procedure to make guidelines
is easier than understanding the specification completely.
Message type selection. We first need to choose message
types for guidelines. As described in §1, we aim at evaluat-
ing security authentication in UEs; therefore, we focus on
the messages that the UEs should not accept without valid
security protection (i.e., integrity protection). In other words,
we exclude messages that are not protected by design (i.e.,
plain). As a result, we consider 14 message types for testing
both NAS and RRC, which can be found in Tab. 3.
Construction. For each message type, we generate guide-
lines for negative test case generation. To this end, we first
carefully analyze the specification and identify statements
that explicitly prohibit certain messages. We then generate
guidelines manually by transforming these statements. We
have three rules for this transformation.
• If specification does not explicitly mention a certain compo-

nent, the guideline adds all possible values to its candidates
(i.e., wildcard).

• If specification defines invalid or prohibited values for a
component, the guideline adds them to its candidates.

• If specification defines allowed values for a component, the
guideline adds its complement set to its candidates.2

As a result, we generate 17 guidelines from the specifica-
tion (Tab. 5).
Example. Fig. 6 shows how we generate a guideline from
specification using Identity request as an example. As shown
in the topmost part of Fig. 6, the specification only allows

2For example, as shown in Tab. 5, if EIA1, EIA2, EIA3 are allowed, we
add test cases for EIA0 and EIA 4 to 7.

Except the messages … below, no NAS signalling messages shall be processed by the UE…
unless the network has established secure exchange of NAS messages…
…
- Identity request ((if requested identification parameter is IMSI)

Guideline
(§5.2.1)

Specification

Over-
approximation

(§5.2.2)

State Security Header Type Message Type IE Value

* * Identity Request Identity Type 2 not IMSI
MAC

No-SC 0 (no integrity protected) Identity Request Identity Type 2 0 (reserved) plain

*

No-SC 1 (integrity protected) Identity Request Identity Type 2 0 (reserved) plain
No-SC 0 (no integrity protected) Identity Request Identity Type 2 2 (IMEI) plain
No-SC 0 (no integrity protected) Identity Request Identity Type 2 0 (reserved) broken

N-SC 0 (no integrity protected) Identity Request Identity Type 2 0 (reserved) plain

Figure 6: The guideline for the Identity Request test messages.
Note that the ‘*’ indicates the wildcard.

specific messages to be processed by the UE without integrity
check. One of such messages is Identity request; it has an ad-
ditional restriction that the message’s requested identification
parameter (i.e., Identity Type 2) should be IMSI, whose value
is 1. According to the rules described above, we formulate
a guideline for Identity request. This guideline has a com-
plement set for Identity Type2 to exclude the specified value
(IMSI) from its candidates. Moreover, we set arbitrary val-
ues (i.e., wildcards) for remaining components: state, security
header type, and MAC. This reflects the above specification;
it says that Identity request without IMSI should be always
protected. In other words, a UE should not accept such a mes-
sage even with any combination of the remaining components.
Therefore, DOLTEST considers their all possible combina-
tions to comprehensively evaluate a UE’s authentication logic.

As another example, the fourth guideline in Tab. 5 is de-
rived from the statement “... the E-UTRAN may configure
the UE to perform measurement reporting, but the UE only
sends the corresponding measurement reports after success-
ful security activation.” This configuration is handled by an
RRCConnectionReconfiguration message with the measConfig IE.
Therefore, the guideline is used for validating whether the UE
checks integrity correctly with this message. To understand
this message, one should also look procedure description on
measurement configuration (clause 5.5) and message structure
(clause 6) in [7].

5.2.3 Over-approximated test case generation

After finishing the guideline generation, DOLTEST enumer-
ates every test message according to the guidelines, as shown
in Fig. 6. In particular, for making a test case, DOLTEST
chooses one of the candidate values in each component.
For information elements and security header components,
DOLTEST uses possible values defined in [4] and [3]. For
MAC, DOLTEST uses zero (i.e., no integrity) and random
(i.e., broken integrity) MAC for their candidates. This step
is fundamentally over-approximation because there may be
some exceptions in our enumerations, which are not truly neg-
ative messages. DOLTEST can discover these exceptions by
observing the behaviors of multiple implementations, which
are discussed in §5.4. Finally, we generate 1,848 test cases in
total from 17 guidelines, which are shown in Tab. 5.

USENIX Association 31st USENIX Security Symposium 1331

5.3 Over-the-Air Testing
DOLTEST conducts the generated test cases using its over-
the-air testing framework.
Testing environment. As shown in Fig. 4, over-the-air test-
ing is composed of the test EPC/eNB and the test UE. To
implement the test EPC/eNB, we use a modified version of
srsLTE [24] (release 19_09) in combination with an USRP
B210 as software-defined radio. The test UE is equipped with
a programmable SIM card (ISIM-SJA2 or SIM-SJS1-4FF).
It is connected to the testing framework, which uses the di-
agnostic message (DM) monitoring tool [28, 58] to obtain
changes in baseband and Android Debug Bridge (ADB) [11]
to obtain system-wide changes. During the test case execu-
tion, the radio interface and test UE are encapsulated into a
Faraday case [54] to avoid any interference to the commercial
network and users.
Testing procedure. For each test case, which consists of a
test message and an abstract state, DOLTEST first moves the
testing UE’s state to the target state, sends the test message,
and collects responses for finding bugs. To change the UE’s
state, DOLTEST follows standard authentication procedures
in LTE; the EPC/eNB sends 1) Security Mode Command in NAS
and RRC for N-SC and NR-SC, respectively, and 2) Attach

Accept message for REGI. Then, the EPC/eNB sends the test
message to UE, and DOLTEST collects the UE’s responses
(if any), alongside with internal log messages retrieved via
DM and ADB. The responses and logs are then used to build
the deterministic oracle (§5.4).
Reducing state transition overhead. For efficiency in over-
the-air testing, DOLTEST can reduce repetitive state transi-
tion overhead. Remember that state transition happens only
by special messages such as Security Mode Command or Attach

Accept. In other words, we can assure a UE’s state remains the
same if it accepts any message that is not one of these special
ones. Using this property, DOLTEST makes a UE to execute
multiple messages consecutively without going back to the
initial state, NO-SC. This makes DOLTEST exempt from a
time-consuming procedure that reboots the UE by invoking
airplane mode at every test case execution.

However, it does not mean that DOLTEST can send an
unlimited number of test messages at once. The specification
defines that every message should be processed in a specific
time slot; otherwise, a UE silently releases the connection and
increases its attempt counter. If this attempt counter exceeds
its threshold, the UE will stay in a disconnected state for
12 minutes (i.e., T3402 [4]), resulting the delay in testing.
Thus, DOLTEST limits the number of consecutive test cases.
Empirically, the current prototype of DOLTEST only sends
six messages in a session to avoid this issue.
Testing time. DOLTEST requires several hours to test all
1,848 test messages due to its over-the-air testing. We ob-
served that one session took about 10 seconds, and the overall
testing took 8 hours on average; this testing time varies over

the tested devices. There are several reasons for such large
time consumption. First, DOLTEST needs to wait for seconds
to determine whether the UE does not respond to a test mes-
sage. One of the most common reactions against negative
messages is silently rejecting the messages. To distinguish
this from a slowdown in delivering responses, we use a time-
out — 2 seconds in our prototype — which delays the overall
testing. Second, the UE occasionally stops reconnecting to
the testing framework after disconnection. This situation lasts
for a few minutes due to the radio environment or internal
logic of the UE. To escape from it, we sometimes manually
invoked the airplane mode to reset. This idle time occupies
over 70% of the overall testing.

5.4 Deterministic Oracle Building
DOLTEST builds a deterministic oracle to overcome the
ambiguities in understanding specification. In particular,
DOLTEST first makes initial assumptions and refine them
for building the oracle.
Initial assumptions. DOLTEST initially assumes that a UE
should silently drop all our test messages. This is because we
construct our test messages that are explicitly prohibited or
invalid based on the specification.
Refinement. DOLTEST refines a preliminary oracle based
on deviant behaviors in implementations. Below, we show our
refinement procedure based on the type of deviant behaviors.
• If a UE returns a normal response, it means either 1)

the UE has an implementation flaw or 2) the message is
exceptional in the specification. To confirm this, we inves-
tigate every part of the specification that defines how the
UE should behave if it receives the test message. Then, we
check whether the current response is standard-compliant or
not. If the specification allows this test case as an exception,
we eliminate this case from the over-approximated set be-
cause it is actually a positive case. Otherwise, we consider
it as an implementation flaw (§6.1) and further analyze its
implication (§7). Finally, we might not be able to figure out
the standard-compliant behavior even after checking the
specification, due to its ambiguity. In such a case, we dis-
cuss with a representative from 3GPP (§6.2) to understand
the standard-compliant behavior.

• If a UE sends a reject or an error message, we further
check whether the specification mandates to use a specific
reject or an error message. If so, we modify the oracle to
regard the correct behavior as sending that message, and
consider other behaviors as non standard-compliant. If a
standard-compliant behavior for the test case is undefined,
we refine our oracle to ignore any reject response. Note that
this unspecified behavior could be used for device finger-
printing, which will be discussed in §6.3.

• If a UE has no response, we further check the UE’s in-
ternal logs for particular message types. These message
types have no response inherently according to the specifica-
tion. Such message types are Attach reject, EMM information,

1332 31st USENIX Security Symposium USENIX Association

and RRC ConnectionRelease. Since these message types can
change the UE’s internal state, we use information from
DM or ADB, which is collected from DOLTEST’s testing
framework to determine whether the messages are actually
rejected (§5.3). If the UE changes its state, similar to the
first case, we investigate the specification related to our test
case and check the standard-compliant behavior. In App. B,
we described the detailed logic for handling these messages.
Except for these three message types, other message types
have explicit corresponding response messages when they
process the transmitted test messages. Thus, for those mes-
sage types, DOLTEST can determine the UE’s rejection of
the messages without monitoring UE’s state.
During the refinement procedure, we successfully handle

messages that return reject responses, including Security Mode

Failure, EMM status, or RRCConnectionReestablishmentRequest.
Moreover, we also eliminate positive cases from our over-
approximation related to Identity Request. Lastly, we refined
three ambiguities in the specification (§6.2) and two types of
unspecified rejecting behaviors (§6.3).

6 Negative Testing Results
We applied DOLTEST on 43 cellular devices from five ma-
jor baseband manufacturers: Qualcomm, Exynos, MediaTek,
HiSilicon, and Intel. We include details for these devices in
Appendix (Tab. 6). Using the guidelines in §5.2, we gener-
ated 1,848 test messages and conducted the test at security
abstracted states in §5.1. In summary, we uncovered 26 im-
plementation flaws using our negative test framework (§6.1).
We also uncovered inconsistent error handling among de-
vices (§6.3). Note that such inconsistencies are legitimate
because they are undefined in the specification; however, they
can also be used for device fingerprinting (§7.2).
Statistics. Among 1,848 test messages, 229 of them have
helped DOLTEST to discover flaws. In addition, 83 test mes-
sages exhibited inconsistent error handling behaviors as de-
scribed in §6.3. For the remaining 1,536 messages, all UEs
handled them without any problems.

6.1 Implementation Flaws
Using DOLTEST’s negative test suite, we could discover 26
implementation flaws. We categorized implementation flaws
into nine types based on the problematic behaviors as shown
in Tab. 2. The numbers in column ‘D’ represents the our
findings on each flaw type.

Tab. 3 shows uncovered implementation flaws on each mes-
sage in each security abstracted state. Due to the space limit,
we leave our full testing results in the Appendix (Tab. 6). Ex-
isting work has shown that some UEs accept a few unauthen-
ticated RRC/NAS messages. While those bugs are patched in
newer basebands, we were able to find new variants thanks to
our extended coverage. We found a total of 22 cases, among
which 4 cases were previously discovered in old basebands.
In addition, owing to the stateful testing that considers the var-

Table 2: Description of implementation flaw types.
S: Security header type mishandling D L B A

S1 Accept invalid security header types for certain message types 5 0 0 0
S2 Accept invalid security header type for certain UE states 3 2 0 0
S3 Mishandle reserved security header type 1 0 0 0

M: Message type mishandling D L B A
M1 Accept prohibited message types before security activation 2 2 0 0
M2 Accept unprotected messages with certain message types 6 0 0 20

after security activation
I: IE/value mishandling D L B A

I1 Accept prohibited IEs 3 1 0 0
I2 Accept prohibited values 3 0 0 0
I3 Mishandle reserved values 3 0 2 0
I4 Mishandle reserved IEs 0 0 47 0

D: DOLTEST, L: LTEFuzz, B: BaseSpec, A: Atomic

ious threat models, DOLTEST uncovered four flaw types (M2,
S1, S2, and S3) in the state where the UE has security con-
text (i.e., post-AKA).

To show the effectiveness of our approach, we compared
DOLTEST with the recent works — LTEFuzz, BaseSpec, and
Atomic — on uncovering baseband implementation flaws.
We directly compare with the results reported in these papers,
excluding design flaws that are out-of-scope of our work. This
is because LTEFuzz [36] and Atomic [15] are not publicly
available, and BaseSpec only supports a subset of our tested
devices. Plus, due to the anonymity, part of the analysis code
for BaseSpec is not publicly available, which makes reproduc-
tion non-trivial. The numbers in right four columns indicate
uncovered implementation flaws for each flaw type. In partic-
ular, the state-of-the-art negative testing tool, LTEFuzz [36]
can only cover three types (S2, M1, I1) finding five implemen-
tation flaws. This is because, unlike DOLTEST, LTEFuzz is
limited to exploring UE states and message components (e.g.,
negative IE/values and security header types). Other works
are specialized in finding specific types of flaws. In particu-
lar, Atomic [15] found 20 flaws of the M2 flaw type, which
are originated from mishandling three message types. Also,
BaseSpec [34] targeted the implementation flaws in message
parsing and found numerous flaws of the I3 and I4 flaw types.
It uncovered 47 flaws of the I4 flaw type, which are originated
from the mishandling of NAS messages having malformed
structure. This type of flaw is out of DOLTEST’s testing
scope. The generated test messages in DOLTEST follow the
defined structure by specifications. Compared to other works,
DOLTEST could uncover the various types of flaws owing to
its over-approximated test case generation and stateful testing.

The exploitability of each implementation flaw heavily de-
pends on its tested state, which is directly mapped to the
threat model. In particular, while the implementation flaws
in NO-SC could be exploited by FBS, the implementation
flaws in other states only can be exploited by MitM or Signal
Injection. Note that each threat model has its own challenges
for conducting the attack(s). The FBS attacker needs to oper-
ate with higher signal strength to lure the victim. Including
the FBS requirement, the MitM attacker requires to maintain
radio configuration is additionally. Signal injection attacker

USENIX Association 31st USENIX Security Symposium 1333

Table 3: Implementation flaws on messages. The numbers in parentheses indicate the number of flaws that have the same
message type and states but different details, which results in different implementation flaws. (See §6.1 for the detailed reasons)

Protocol Message State Implication Studied?NO-SC N-SC NR-SC REGI All

RRC

RRCConnectionReconfiguration I1(2)†, I1 M2 - AKA bypass (I1), Location leak (I1,M2) [36], [52]
RRCConnectionRelease - M2 - Redirection attack (M2) [41]
SecurityModeCommand I2†,I3 - - Eavesdropping (I2,I3) [48]
UECapabilityEnquiry - M2 - Information leak (M2) [53]
CounterCheck M1 M2 - Information leak (M2) -
UEInformationRequest M1† M2 - Location leak (M1,M2) [52]
DLInformationTransfer - M2 - - -

NAS

Identity Request I2,I3 - S1,S2(2)

S3

Information leakage (S1,S2,I2,I3) [43]
Security Mode Command I3 - - Eavesdropping (I3) [48]
GUTI Reallocation Command - S1 Identity spoofing (S1), Denial-of-Service (S1) [36]
EMM Information - S1 - NITZ spoofing (S1) [45]
Downlink NAS Transport - S1 - SMS phishing (S1) [43]
Attach Reject S2,I2 - S1 Denial-of-Service (S1,S2,I2) [52]
Attach Accept - - - -

Studied?: Attacks using the message type was previously studied, †: Previously reported

needs to be synchronized to the legitimate eNB, and its signal
strength needs to be higher than 3 dB for the capture effect.

In the following, we discuss implementation flaws that
DOLTEST can discover in detail.

6.1.1 Mishandling security header type

S1: Accept security header types invalid for certain mes-
sage types. The 3GPP specification defines the value of the
available security header types for each message. For example,
the two security header types — integrity protected with new
EPS security context (3) and security header for the Service
Request message (12) — are set to be used only for Security

Mode Command and Service Request, respectively. Therefore, the
other message types should not use these dedicated values
according to the specification (clause 9.3.1 in [4]).

The S1 flaws are uncovered by checking if devices accept
NAS messages having such invalid security header types. We
found that every device using Qualcomm baseband accepts
any NAS message (except two message types) without check-
ing the integrity if the security header type value is set to 3.3

This implies that the adversary can launch all known attacks
on NAS (Tab. 3) by using that particular security header type.
Considering its severity, Qualcomm has assigned a CVE with
a critical security rating (CVE-2019-2289).
S2: Accept invalid security header type for certain UE
states. The specification defines that a UE needs to handle se-
curity header types properly according to its state. Particularly,
in NO-SC, where the security context is not yet established,
a UE should discard a message with the security header types
— integrity protected (1) or integrity protected and ciphered
(2) — because UE cannot calculate a valid MAC. Moreover,
a UE should not accept a message with the security header
type not security protected (0) after the security context is
established (clause 4.4.4.2 in [4]).

DOLTEST discovered three vulnerabilities when handling

3Because we reported this issue in early 2019, the issue was patched on
devices released after that.

Identity Request and Attach Reject. In particular, we found
that iPhone 6 and Galaxy Note 5 responded to any Identity

Request whose security header type is 1 even before the se-
curity context is established (i.e., NO-SC).4 This causes in-
formation leakage because these UEs send privacy-critical
identities (e.g., IMEI or IMEISV) in NO-SC.

Moreover, we discovered that many UEs respond to the
message with security header type 0 after N-SC. Our neg-
ative testing shows that devices with Exynos (all), devices
with MediaTek (all), and devices (LG and Samsung) with
Qualcomm baseband contain this implementation flaw. When
these devices receive a plain Identity Request after N-SC,
they respond to it with an Identity Response message that con-
tains the IMSI. Note that this bug only appears in Identity

Request message when Identity type 2 IE is set to the reserved
value (0). It also violates a standard because UEs should
not accept plain messages after N-SC. Previous work has
shown that some UEs mishandle the IE value on Identity

Request [43]. However, our result shows that mishandling an
invalid security header type also leads to the same problem.
S3: Mishandle reserved security header type. The specifi-
cation does not define usages for security header types from 6

to 11, which are reserved for future extension. Plus, if a UE
receives security header types ranging from 13 to 15 in a mes-
sage, it should interpret those as 12, which is dedicated to the
Service Request message (clause 9.3.1 in [4]).

DOLTEST discovered that some UEs violate the afore-
mentioned behaviors in the specification (S3). We found that
all tested UEs have no problem when the security header
types are 6–11; they discard all messages with the header
types. However, we found that several UEs fail to handle
other reserved security header types. Particularly, devices with
Qualcomm (all produced before mid-2017) and one Huawei
baseband send an EMM Status message when they receive a
message with security header type 12. By contrast, they do

4iPhone 6 with the old firmware (iOS 12.1) does not have this flaw,
whereas the same model with the latest firmware (iOS 12.5.1) has.

1334 31st USENIX Security Symposium USENIX Association

not respond to messages with security header type 15. In other
words, the UEs behave differently to messages with those two
security header types, which should be the same. Meanwhile,
other devices do not respond to messages with those security
header types, conforming to the standard.

6.1.2 Mishandling message type

M1: Accept prohibited message types before security ac-
tivation. The cellular system is designed to expose minimal
information before security activation. Hence, the specifica-
tion prohibits to process of certain message types depending
on the security context. Thus, UEs should not accept those
message types in NO-SC (clause 5, Annex 6 in [7]).

We discovered that many UEs accept two prohibited
message types in NO-SC. First, all devices with the
Exynos baseband accept a CounterCheck and respond with
a CounterCheckResponse. Second, devices with MediaTek (1
device), Qualcomm (2 devices), and Exynos (all) base-
bands accept a UEInformationRequest and respond with
UEInformationResponse. Although M1 was widely tested in pre-
vious works [36,52,53], we newly uncovered implementation
flaws on CounterCheck. The flaw in UEInformationRequest was
previously known, but we were still able to find multiple un-
patched devices.
M2: Accept unprotected messages with certain message
types after security activation. Once the security context
is established, certain message types should only be used in
integrity-protected messages. Thus, UEs should discard these
messages if their integrity check fails after NR-SC (clause
5.3.1.2 in [7]).

DOLTEST also found that several UEs accept unprotected
messages with zero MAC even after NR-SC. In particular,
we observe that devices with Qualcomm (2 devices) baseband
accept every unprotected RRC messages types after NR-SC.
Due to this fatal implementation flaw, an attacker can spoof ev-
ery NAS/RRC message even after NR-SC. Previous studies
found these bugs only in NO-SC.

6.1.3 Mishandling IE and value.

I1: Accept prohibited IEs. The specification prohibits a UE
to handle the messages that contain security-critical IEs in
NO-SC and N-SC. Thus, the UE should not accept messages
containing prohibited IE in a specific state (clause 5 and
Annex 6 in [7]).

We found the I1 flaws in five test devices that accept
three forbidden IEs. These IEs are used for establish-
ing signaling bearer 2 (srb-ToAddModList), data bearer (drb-
ToAddModList), and requesting signal measurement report from
UE (measConfig). In particular, three devices with the Qual-
comm baseband incorrectly accept a message with the first
two IEs. DOLTEST newly discovered the bug associated with
the first IE. Also, DOLTEST found that two devices with
the latest Exynos baseband accept measConfig IE and send
Measurement Report to the network. Interestingly, even though

this vulnerability was patched in 2016, it has been introduced
again in the latest version. It shows that we require negative
testing to prevent such regression bugs.
I2: Accept prohibited values. The standard also explic-
itly prohibits the use of certain IE values in N-SC (sub-
clause 4.4.4.2 in [4], 5.3.1.2 in [7]). We uncovered three
implementation flaws of this type in six test devices: i)
Identity Request message containing an IE value to request
the UE’s privacy-sensitive identity (IMEI and IMEISV), ii)
Attach Reject whose reject cause is set to #25, iii) Security

ModeCommand in RRC, which contains null integrity protection
algorithm (EIA0).

In particular, we found that the two devices with the lat-
est Exynos baseband accept the EIA0 value in Security Mode

Command in RRC, which is explicitly prohibited by the standard.
Note that the same bug was found in the USB dongle with the
Huawei baseband previously [48]. Of note, none of the other
basebands from the same manufacturer had this problem. We
got high severity from Samsung for this vulnerability.
I3: Mishandle reserved values. The specification contains
reserved values, whose operation is not clearly defined. Thus,
we analyzed UE’s behavior against messages with reserved
values.

Our negative testing exposed implementation flaws of I3
in three IE values. First, UE mishandle reserved security
algorithms in NAS and RRC. The security algorithm is a
3-bit value indicating the security algorithm type for the se-
curity context; the value from 0 to 3 have dedicated algo-
rithms, whereas the values from 4 to 7 are reserved. We found
that devices with Qualcomm (two) and Exynos (one) accept
security mode command with these reserved values and respond
with security mode complete containing zero MAC. This im-
plies that those devices nullify the integrity protection on the
control plane, which results the same security problem to the
use of prohibited value EIA0 (clause 4.4.4.1 in [4], clause
5.3.1.2 in [7]). Second, we also discovered inconsistency
among devices in handling the Identity Request message. In
particular, if a device receives the Identity Request message
whose identity type 2 value is zero, devices with Huawei
and Intel baseband had no response, whereas other devices
respond it with Identity Response containing IMSI. By further
referring another specification document, we found that the
latter is correct implementation because the reserved value 0

should be interpreted as IMSI (clause 10.5.5.9 in [3]).

6.2 Ambiguous Statements in Specification
During our research, we found that the specification contains
ambiguous or often conflicting statements, which could be
interpreted in multiple ways. In particular, we had to dis-
cuss three issues with a representative from 3GPP SA3 to
understand the exact intention and historical meaning of the
specification. We briefly summarize our discussion below.
CounterCheck. We found that the specification states the
handling of the CounterCheck message differently in two parts.

USENIX Association 31st USENIX Security Symposium 1335

In the RRC specification [7], the table in the appendix (An-
nex 6) specifies that the UE should not accept unprotected
CounterCheck, whereas the procedure description in the body
(clause 5) does not prohibit it. Due to this inconsistency, it
is ambiguous whether accepting a CounterCheck message be-
fore security activation is prohibited. Meanwhile, another
specification spells out that CounterCheck and its response are
integrity protected (clause 7.5 in [6]). According to the rep-
resentative, Annex 6 is an "informative" annex, so it does
not mandate integrity protection of CounterCheck. However,
he added that because the CounterCheck message is used to
verify the amount of data sent/received, it is nonsense to use it
before the data bearer activation (i.e., before REGI). Should
this prohibited? Except Samsung, everyone does (§6.1.2).
UECapabilityEnquiry. We also found that it is ambigu-
ous to determine the correct operation of UE against
UECapabilityEnquiry. This is because this behavior is written
only on the network-side without clearly defining the UE’s
behavior. The specifications after v15.9.0 say that "E-UTRAN
should retrieve UE capabilities only after AS security acti-
vation" for the UECapabilityEnquiry message. This means that
eNB can request the UE’s radio capability information only
in NR-SC and REGI. However, it is unclear that what UE
should do when it receives such a message in NO-SC. Inter-
estingly, our test results show that all UEs respond in NO-SC.
Meanwhile, a previous work regards such unauthenticated
UE capability [53] as a security vulnerability in terms of
information leakage.

The representative said that the specification does not ex-
plicitly prohibit the UE to transmit UE capability to eNB
before security activation, but only recommends to prohibit.
This is because the term "should" means it is highly rec-
ommended but not mandatory, whereas "shall" means it is
mandatory, according to the specification drafting rule [1].
Also, he added that considering security implications of unau-
thenticated UE capability transfer procedure, the standard
body tried to prohibit the use of UECapabilityEnquiry before
security activation by using the term "shall." However, due to
the performance optimization issue, some network equipment
manufacturers opposed the prohibition. Because the current
standard allowing exceptional cases with the term "should" is
the result of a compromise, UE capability transfer before se-
curity activation is not an implementation vulnerability. As a
result, we exclude this message during the refinement process.
Identity Request. Lastly, we found an ambiguous descrip-
tion for the Identity Request message that contains a reserved
value. According to the NAS specification, 1) a UE can re-
spond to a plain Identity Request message if request iden-
tification parameter is IMSI before security activation [4].
Concurrently, another specification [3] indicates that 2) the
UE should interpret the reserved value as IMSI [3]. Our test-
ing revealed that UEs with Huawei or Intel baseband did not
respond to the plain Identity Request message containing the
reserved value. When we reported this issue to the Huawei

PSIRT (Product Security Incidence Response Team), they
argue that having no response is correct behavior, because
they think the reserved value is not exactly an IMSI parameter.
If it is, they argue that statement 1) should have referred the
statement 2). However, according to the 3GPP representative,
having a response with IMSI is the correct behavior.

6.3 Unspecified Behaviors in Specification
During the test, we observed that devices exhibit inconsis-
tent behaviors when handling the same messages. Unlike the
previous implementation flaws, these inconsistencies are all
legitimate because they are unspecified in the specification.
However, we believe that such inconsistencies can be used to
fingerprint devices, which will be shown in §7.2. After inves-
tigating these issues, we summarized them into two types.
Implicit vs explicit reject. UE’s rejecting behaviors can be
divided into two types: implicit reject and explicit reject.
In particular, UEs can silently drop a message without any
action if the message is prohibited or invalid (implicit re-
ject). In contrast, they can use certain messages to report
errors, which include Security Mode Reject, EMM Status, and
RRCConnection ReestablishmentRequest (explicit reject).

We found that rejecting behaviors for certain messages are
different depending on manufacturers. For example, devices
with Huawei baseband send EMM status when they receive
a NAS message with invalid security header type 3. How-
ever, devices with old Qualcomm baseband send the message
when they receive a NAS message with reversed security
header type 12 instead of 3. Meanwhile, devices with Medi-
aTek, Exynos, Intel, and recent Qualcomm basebands never
send that message during our test.
Different causes in explicit reject. We discovered that de-
vices use different causes to report an error. These causes
offer a detailed description of the erroneous circumstances.
For example, we found that when devices receive NAS Security

Mode Command message with null integrity protection, devices
with MediaTek baseband use cause #23 (UE security capabil-
ities mismatch), whereas others use cause #24 (security mode
rejected, unspecified). This implies that the UEs regard the
reason for the error differently for the negative messages.
Fundamental reasons for inconsistencies. We argue that
the fundamental reason for this inconsistent behavior among
test devices is the lack of specifications for handling invalid
or prohibited messages. In other words, the specification does
not clearly define whether to use error messages or which
causes to use when the UE receives certain invalid or prohib-
ited messages. Thus, handling undefined error cases is up to
the developers, leading to different implementations for man-
ufacturers. Meanwhile, these inconsistencies enable device
fingerprinting attacks (§7.2).

7 Attack Scenarios
In this section, we introduce several representative attacks
that can be performed using the implementation flaws dis-

1336 31st USENIX Security Symposium USENIX Association

cussed in §6. The complete list of possible attacks is shown in
Tab. 3. We implemented each attack on a testbed by slightly
modifying srsLTE [24] with USRP B210/X310 and validated
them on COTS UEs.

7.1 Attacks using Implementation Flaws
7.1.1 NITZ (Network Identity and Time Zone) spoofing

In this attack, an FBS attacker can manipulate the date, local
time, UTC offset, network name, and daylight saving time of
the victim device [45].
Vulnerability. An attacker can bypass security protection ver-
ification by altering a security header type to 3 (S1). Under
normal circumstances, this message should be transmitted
with proper security protection. Although we validated this at-
tack on a Xiaomi Black Shark, all devices with the Qualcomm
baseband prior to the Snapdragon X24 are vulnerable.
Attack Procedure. When the victim UE is connected to a
malicious eNB, the attacker sends an EMM Information message
with security header type 3 containing a manipulated time
or date. Although the EMM Information message contains an
invalid MAC value, the victim UE accepts the message.
Impact. When a UE receives this message, it updates its date
and time based on the message data, which are controlled by
the attacker. This attack is valid while the victim is connected
to the FBS. However, if the UE reconnects to the network
through Service Request, this attack can be sustained because
the EMM Information message is optional in this process, unlike
Attach Request. Note that we have not seen the message in the
Service Request process of our commercial network.

7.1.2 SMS injection

The goal of this attack is to deliver an SMS with manipulated
sender ID, timestamp, and text content. The signal injection
attacker can execute this on a victim UE connected to com-
mercial networks.
Vulnerability. An attacker can perform this attack by combin-
ing two vulnerabilities. She first uses the vulnerability (M2)
that some devices do not check security protection for RRC
messages even after the security activation. Using this, the
signal injection attacker can make a UE in REGI state to
receive a plain RRC message. Then, the attacker can bypass
the NAS security context by using the second vulnerability
(S1); UEs accept some NAS messages without protection if
we use the security header type 3. We validated this attack on
Galaxy S4/S5 with a Qualcomm baseband.
Attack Procedure. The attacker first creates an SMS PDU en-
coded in GSM 03.40 format [2] containing malicious contents.
She then encapsulates the PDU into a plain DL Information

Transfer message containing Downlink NAS Transport with se-
curity header type 3. Afterward, the attacker performs a signal
injection attack to transfer the crafted message. To do this,
the attacker additionally needs to know the victim UE’s ra-
dio identifier (RNTI) which can be acquired from identity
mapping [32, 49] using downlink sniffing tools [12, 14, 21].

Table 4: Different responses of devices to negative messages.

Baseband Device Message

#1 #2 #3 #4 #5

Intel Apple iPhone XS · · · A5 ·
Qualcomm Xiaomi Mi Mix 2 · A2 A4 A5 A3
Exynos Samsung Galaxy S10 A1 · A4 A5 ·
MediaTek LG K50 · · A4 A6 ·
HiSilicon Huawei Mate 20 Pro · A3 · A5 ·

• Request– #1: CounterCheck, #2: GUTI reallocation command with security
header type 3, #3: Identity Request with reserved value (0), #4: Security mode com-
mand with security header type 3 and reserved value, #5: EMM information with
security header type 12
• Response– ·: No response, A1: CounterCheckResponse, A2: GUTI reallocation

complete, A3: EMM status with cause #97 A4: Identity Response A5: Security mode
reject with cause #24 A6: Security mode reject with cause #23

Impact. When a victim UE receives this message, it displays
a notification the same way as in the case of a normal SMS.
Owing to security component mishandling, the victim UE ac-
cepts the attacker’s plain message while it is connected to the
commercial network. Because the LTE device still supports
legacy SMS over NAS through the Downlink NAS Transport, it
also accepts malicious SMS messages.

7.1.3 Eavesdropping and manipulating data traffic

In this attack, a MitM attacker can eavesdrop or manipulate
data plane packets between a victim UE and networks [48].
Vulnerability. An attacker can set the null integrity protection
algorithm because the UE accepts the forbidden security al-
gorithm (I2). We validated this attack on Galaxy S10, Note10,
and A71 with the latest Exynos chipset.
Attack Procedure. When the victim UE is connected to the
malicious eNB, the attacker initiates the normal ATTACH proce-
dure with the UE. Although the attacker does not have a valid
key, she can pass mutual authentication and the NAS security
activation procedure by relaying messages from a legitimate
network. Thereafter, the attacker sends an RRC SecurityMode

Command message with EIA0. After that, the UE uses null in-
tegrity protection in its subsequent communication.
Impact. When a device receives a SecurityModeCommand mes-
sage with EIA0, it uses null ciphering and null integrity protec-
tion from a subsequent communication (subclause 5.3.1.2 [7]).
Because the data plane packets of the wireless end are trans-
mitted in plain text in subsequent communication, an attacker
can eavesdrop or manipulate the packets. Note that EIA0, in
which an UE accepts EIA0 (Null algorithm) for the integrity
checking logic, is an old and well-studied issue. However,
DOLTEST uncovered that brand new devices (e.g., Galaxy
S10/Note10/A71) still have the same implementation flaw.

7.2 Fingerprinting
The different behaviors of UEs against the same negative
message enable an attacker to fingerprint the baseband of the
victim device in the wireless domain. To do this, an attacker
can leverage two types of responses from UE: non standard-
compliant behavior (presence of vulnerability) (§6.1) and

USENIX Association 31st USENIX Security Symposium 1337

inconsistent error handling (§6.3). During the test, we found
that more than 80 of our test messages can induce those be-
haviors.

As shown in Tab. 4, an attacker can classify devices up to
the baseband manufacturer level using these different behav-
iors. Moreover, it is possible to classify some devices with
Qualcomm, Samsung, and MediaTek basebands up to the
chipset-level, because they have chipset-dependent features.
Once the UE is identified, the attacker can further execute
targeted attacks by combining known vulnerabilities at the
OS-level or baseband-chipset-level [53].

Unlike previous works, our fingerprinting uses inconsisten-
cies in implementations. Previous work used the unauthen-
ticated capability information of users (Attach Request and
UECapabilityInformation) as fingerprint features, which are al-
lowed to be exposed in the air [53]. While the root cause of
previous work is due to flaw of the standard design, recent
standard tries to protect such information from being exposed
before security activation. If UE information is explicitly pro-
tected in the specification, those features cannot be used for
fingerprinting. However, our features remain valid unless the
implementation inconsistency remains.

8 Discussion & Limitations
Adopting NLP. A natural next step seems to adopt the NLP
on analyzing the large-sized and complex specifications for
test case generation. Accordingly, DARPA also has issued
a call for a project [18] that adopts NLP on 3GPP specifica-
tion analysis. Recently, Chen et al. presented a technique to
discover a few particular vulnerabilities by applying NLP on
the specification analysis [15]. While NLP looks promising,
adopting it on generating negative test cases still needs to
address several challenges according to our detailed specifi-
cation analysis. First, it should be capable of extracting the
prohibited procedure from the sentences spread over the dis-
tinct locations. A single sentence does not solely contribute
to extract prohibited operations. During the refinement pro-
cedure §5.4, we had to cross-check multiple sentences to
understand the context of the procedure and to determine the
implementation flaw (§5.4). Note that such a case where the
description of a procedure is scattered far away from each
other is one of the key limitations of the prior work [15]. Sec-
ond, the NLP has to handle ambiguities in the specification.
In §6.2, we discuss three different cases of ambiguities, all
of which seem challenging for NLP to resolve. For example,
we observed that the specification only describes the behavior
in the network-side perspective without clearly defining the
UE’s behavior. In summary, unless the NLP addresses these
challenges effectively, we believe that the manual analysis on
the specification is still required.
Negative testing beyond LTE. Although DOLTEST aims to
find UE implementation flaws in the LTE domain, we believe
that the overall philosophy and approach could be adopted
to the other layers of cellular generations (2G, 3G, and 5G)

after specification analysis. In particular, DOLTEST requires
the following considerations of new features in 5G [5, 10];
the 5G-SA has 1) newly defined messages (e.g., REGISTRATION
REQUEST), 2) newly defined or modified IE (e.g., SUCI) and its
value, and 3) newly added UE’s state. This requires changes
in our security abstracted states because there is a new RRC
state (RRC INACTIVE), where the RRC security context is main-
tained even after the radio connection is suspended. Also, one
can implement a negative testing framework based on the
publicly available 2G/3G open stack, with another substantial
analysis. We leave it as future work.
Limitations. First, DOLTEST inherently requires a lot of
manual effort on its building. This is because the specifica-
tion is written in natural language without being formally
described. However, our approach requires only one-time ef-
forts and can be adopted without duplicating the laborious
manual analysis. Second, DOLTEST cannot guarantee any
completeness because of its manual analysis. Therefore, it
would not be surprising if someone can discover additional
flaws in baseband firmware even after applying DOLTEST.
Third, DOLTEST suffers from inherited limitations of black-
box testing. As blackbox testing, DOLTEST cannot under-
stand the internals of a UE; we simply believe that the UE
rejects messages if it has no explicit behaviors (e.g., responses
or state changes in DM or ADB). However, it is possible that
baseband vendors implement hidden behaviors even though
we have not found any indications for this during our testing.
Finally, DOLTEST relies on internal logs (i.e., DM, ADB)
that are occasionally limited. This is mainly because 1) this
access is proprietary to the baseband manufacturers (e.g.,
Huawei) and 2) the access is not open to all types of UEs (e.g.,
IoT devices). This characteristic limits the negative testing
of DOLTEST in terms of 1) the test coverage (limited test
message types) and 2) the root cause analysis using detailed
internal information (e.g., stored configuration values). We
believe that this limitation will not apply to manufacturers
who adopt the negative testing approach, as they should have
full access to the UE and its debugging capabilities.

9 Related Work
Implementation flaws in LTE. Researchers have widely
adopted over-the-air testing to discover implementation flaws
of the LTE network [36,41,45,48,52]. Shaik et al. [52] studied
security implications when a UE blindly accepts certain pro-
hibited messages due to its implementation or design flaws.
Rupprecht et al. [48] proposed the first testing framework
for LTE baseband and discovered that several UEs accept
insecure security algorithms. Kim et al. [36] introduced a
semi-automatic tool that systematically tests basic security
properties of LTE networks, both in uplink and downlink.
Similar to these works, DOLTEST also aims at discovering
implementation flaws in LTE; however, it widens its coverage
by considering UE states and detailed message components
based on specification.

1338 31st USENIX Security Symposium USENIX Association

Firmware analysis on baseband implementations is also
an effective approach to uncover implementation vulnerabil-
ities [22, 34, 42, 57]. Recently, Maier et al. [42] proposed
emulation-based fuzzing to find memory corruption vul-
nerabilities in UE implementations. Kim et al. [34] exam-
ined the standard-compliance of the baseband software by
comparing extracted binary-embedded properties with the
specification. Unlike DOLTEST, these approaches require
firmware-specific analysis. Moreover, static analysis (e.g.,
BaseSpec [34]) can suffer from false positives due to mispre-
diction of runtime environments.
LTE attack models. Fake Base Station (FBS) has been a
predominant attack model for exploiting design or implemen-
tation vulnerabilities in LTE, such as IMSI catching [17, 44],
fake emergency alert [38], or information leak [53]. Recent
works have demonstrated the practicality of MitM attack in
LTE networks [48, 49]; Rupprecht et al. [49] successfully
demonstrate data manipulation attack by exploiting the ab-
sence of integrity protection in layer 2. Moreover, Yang et
al. [59] presented the SigOver attack, which enables an ad-
versary to inject a malicious message to the victim’s UE even
without a radio connection establishment. To reflect these
emerging attacks in our negative testing, DOLTEST adopts the
most powerful attack model, which is the Dolev-Yao model,
and considers every attack model in our abstracted states.
Design vulnerabilities in LTE. Formal verification has
shown its effectiveness in uncovering design flaws in the stan-
dards [13,29,31]. Hussain et al. [29] presented a model-based
adversarial testing approach on critical procedures of LTE to
detect design flaws. Moreover, Karim et al. [33] adopted a
property-guided formal verification framework to examine
LTE implementations. Unlike these works, DOLTEST targets
finding non standard-compliant behaviors in implementations.
Some other works also have revealed numerous design vul-
nerabilities in LTE, including LTE data plane [37, 51], broad-
cast channel [23, 30, 38], identity mapping logic [32, 49], and
VoLTE domain [35, 39].
Operational issues in LTE. Various works have uncovered
operational issues by analyzing the control plane procedures
in the cellular network [16,27,28,37,47,50,56]. These works
span various applications and use passive analysis on commer-
cial logs. Tu et al. [56] proposed a signaling diagnosis tool to
examine inter-protocol interactions. Hong et al. [27] revealed
an unsafe identity management scheme of the commercial
network, resulting in privacy leakage. Chlosta et al. [16] ana-
lyzed the security configuration of commercial LTE networks.

10 Concluding Remarks
Despite numerous implementation vulnerabilities reported, a
lack of negative testing in specification still leaves other im-
plementation vulnerabilities unchecked. To address this, we
present DOLTEST, a negative testing framework to uncover
the non standard-compliant behaviors in LTE implementa-
tions. After in-depth analysis of the specification, we build

enumerable test cases with deterministic oracle along with the
over-the-air testing tool. As a result, we applied DOLTEST
on 43 devices from five baseband manufacturers and uncov-
ered 26 implementation flaws, of which 22 were previously
unknown. We also found several ambiguous and unspecified
cases in the specification that can confuse even experienced
professionals. We recommend 3GPP to provide formally ver-
ified standards possibly with sample code and negative test
cases as a fundamental resolution to address this problem. Un-
til then, applying NLP for automatic test case generation is left
as an interesting yet formidable challenge for the future work.

Acknowledgement
We sincerely appreciate our shepherd Marius Muench and
anonymous reviewers, for valuable comments and sugges-
tions. This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No.2020-0-
00428, automated security diagnosis framework for cellular
network protocol using formal and comparative analysis, and
No.2019-0-01343, regional strategic industry convergence
security core talent training business)

References
[1] 3GPP. TR 21.801, v17.1.0. Specification drafting rules, 2021.

[2] 3GPP. TS 23.040, v15.3.0. Technical realization of the Short
Message Service (SMS), 2019.

[3] 3GPP. TS 24.008, v16.3.0. Mobile radio interface Layer 3
specification; Core network protocols; Stage 3, 2019.

[4] 3GPP. TS 24.301, v16.5.1. Non-Access-Stratum (NAS) proto-
col for Evolved Packet System (EPS); Stage 3, 2020.

[5] 3GPP. TS 24.501, v16.3.0. Non-Access-Stratum (NAS) proto-
col for 5G System (5GS); Stage 3, 2019.

[6] 3GPP. TS 33.401, v16.3.0. Security architecture, 2020.

[7] 3GPP. TS 36.331, v15.10.0. LTE RRC Protocol specification,
2020.

[8] 3GPP. TS 36.523-1, v15.5.0. User Equipment (UE) confor-
mance specification; Part 1: Protocol conformance specifica-
tion, 2019.

[9] 3GPP. TS 36.523-3, v15.5.0. User Equipment (UE) confor-
mance specification; Part 3: Test suites, 2019.

[10] 3GPP. TS 38.331, v16.3.1. 5G NR RRC Protocol specification,
2021.

[11] Android debug bridge. https://developer.android.com/
studio/command-line/adb.

[12] AirScope. http://www.softwareradiosystems.com/tag/
airscope.

[13] D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and
V. Stettler. A formal analysis of 5G authentication. In ACM
Conference on Computer and Communications Security, 2018.

[14] N. Bui and J. Widmer. OWL: A reliable online watcher for
lte control channel measurements. In All Things Cellular:
Operations, Applications and Challenges, 2016.

USENIX Association 31st USENIX Security Symposium 1339

https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
http://www.softwareradiosystems.com/tag/airscope
http://www.softwareradiosystems.com/tag/airscope

[15] Y. Chen, Y. Yao, X. Wang, D. Xu, X. Liu, C. Yue, K. Chen,
H. Tang, and B. Liu. Bookworm game: Automatic discovery
of LTE vulnerabilities. In IEEE Symposium on Security and
Privacy, 2021.

[16] M. Chlosta, D. Rupprecht, T. Holz, and C. Pöpper. LTE se-
curity disabled: misconfiguration in commercial networks. In
Conference on Security and Privacy in Wireless and Mobile
Networks, 2019.

[17] A. Dabrowski, N. Pianta, T. Klepp, M. Mulazzani, and
E. Weippl. IMSI-catch me if you can: IMSI-catcher-catchers.
In ACM Conference on Computer and Communications Secu-
rity, 2014.

[18] Open Programmable Secure 5G (OPS-5G). https://sam.
gov/opp/6ee795ad86a044d1a64f441ef713a476.

[19] D. Dolev and A. Yao. On the security of public key protocols.
IEEE Transactions on information theory, 1983.

[20] Ericsson2021report. "https://www.ericsson.
com/en/mobility-report/dataforecasts/
mobile-subscriptions-outlook".

[21] R. Falkenberg and C. Wietfeld. FALCON: An accurate real-
time monitor for client-based mobile network data analytics.
In IEEE Global Communications Conference, 2019.

[22] N. Golde and D. Komaromy. Breaking band: reverse engineer-
ing and exploiting the shannon baseband. REcon, 2016.

[23] N. Golde, K. Redon, and J.-P. Seifert. Let me answer that for
you: Exploiting broadcast information in cellular networks. In
USENIX Security Symposium, 2013.

[24] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Ser-
rano, C. Cano, and D. J. Leith. srsLTE: An Open-Source
Platform for LTE Evolution and Experimentation. In ACM
International Workshop on Wireless Network Testbeds, Experi-
mental Evaluation, and Characterization, 2016.

[25] LTE and 5G Subscribers. "https://gsacom.com/paper/
lte-and-5g-subscribers-march-2021-q4/".

[26] 5G implementation guidelines. "https://www.gsma.
com/futurenetworks/wp-content/uploads/2019/03/
5G-Implementation-Guideline-v2.0-July-2019.pdf".

[27] B. Hong, S. Bae, and Y. Kim. GUTI reallocation demystified:
Cellular location tracking with changing temporary identifier.
In Network and Distributed System Security Symposium, 2018.

[28] B. Hong, S. Park, H. Kim, D. Kim, H. Hong, H. Choi, J.-P.
Seifert, S.-J. Lee, and Y. Kim. Peeking over the cellular walled
gardens-a method for closed network diagnosis. In IEEE Trans-
actions on Mobile Computing, 2018.

[29] S. Hussain, O. Chowdhury, S. Mehnaz, and E. Bertino. LTEIn-
spector: A systematic approach for adversarial testing of 4G
LTE. In Network and Distributed System Security Symposium,
2018.

[30] S. R. Hussain, M. Echeverria, O. Chowdhury, N. Li, and
E. Bertino. Privacy attacks to the 4G and 5G cellular pag-
ing protocols using side channel information. In Network and
Distributed System Security Symposium, 2019.

[31] S. R. Hussain, M. Echeverria, I. Karim, O. Chowdhury, and
E. Bertino. 5GReasoner: A property-directed security and
privacy analysis framework for 5g cellular network protocol. In
ACM Conference on Computer and Communications Security,
2019.

[32] R. P. Jover. LTE security, protocol exploits and location
tracking experimentation with low-cost software radio. arXiv
preprint arXiv:1607.05171, 2016.

[33] I. Karim, S. Hussain, and E. Bertino. ProChecker: An auto-
mated security and privacy analysis framework for communica-
tion protocol. In IEEE International Conference on Distributed
Computing Systems, 2021.

[34] E. Kim, D. Kim, C. Park, I. Yun, and Y. Kim. BASESPEC:
Comparative analysis of baseband software and cellular speci-
fications for L3 protocols. In Network and Distributed System
Security Symposium, 2021.

[35] H. Kim, D. Kim, M. Kwon, H. Han, Y. Jang, D. Han, T. Kim,
and Y. Kim. Breaking and fixing VoLTE: Exploiting hidden
data channels and mis-implementations. In ACM Conference
on Computer and Communications Security, 2015.

[36] H. Kim, J. Lee, E. Lee, and Y. Kim. Touching the untouchables:
Dynamic security analysis of the LTE control plane. In IEEE
Symposium on Security and Privacy, 2019.

[37] K. Kohls, D. Rupprecht, T. Holz, and C. Pöpper. Lost traffic
encryption: fingerprinting LTE/4G traffic on layer two. In
Conference on Security and Privacy in Wireless and Mobile
Networks, 2019.

[38] G. Lee, J. Lee, J. Lee, Y. Im, M. Hollingsworth, E. Wustrow,
D. Grunwald, and S. Ha. This is your president speaking:
Spoofing alerts in 4G LTE networks. In ACM International
Conference on Mobile Computing Systems (MobiSys), 2019.

[39] C.-Y. Li, G.-H. Tu, C. Peng, Z. Yuan, Y. Li, S. Lu, and X. Wang.
Insecurity of voice solution VoLTE in LTE mobile networks. In
ACM Conference on Computer and Communications Security,
2015.

[40] M. Lichtman, R. P. Jover, M. Labib, R. Rao, V. Marojevic, and
J. H. Reed. LTE/LTE-A jamming, spoofing, and sniffing: threat
assessment and mitigation. IEEE Communications Magazine,
2016.

[41] H. Lin. LTE REDIRECTION: Forcing targeted LTE cellphone
into unsafe network. In Hack In The Box Security Conference
(HITBSec-Conf), 2016.

[42] D. Maier, L. Seidel, and S. Park. BaseSAFE: baseband sani-
tized fuzzing through emulation. In Conference on Security
and Privacy in Wireless and Mobile Networks, 2020.

[43] B. Michau and C. Devine. How to not break lte crypto.
In ANSSI Symposium sur la sécurité des technologies de
l’information et des communications (SSTIC), 2016.

[44] P. Ney, I. Smith, G. Cadamuro, and T. Kohno. SeaGlass: en-
abling city-wide IMSI-catcher detection. Privacy Enhancing
Technologies, 2017.

[45] S. Park, A. Shaik, R. Borgaonkar, and J.-P. Seifert. White rabbit
in mobile: Effect of unsecured clock source in smartphones. In
Workshop on Security and Privacy in Smartphones and Mobile
Devices, 2016.

1340 31st USENIX Security Symposium USENIX Association

https://sam.gov/opp/6ee795ad86a044d1a64f441ef713a476
https://sam.gov/opp/6ee795ad86a044d1a64f441ef713a476
"https://www.ericsson.com/en/mobility-report/dataforecasts/mobile-subscriptions-outlook"
"https://www.ericsson.com/en/mobility-report/dataforecasts/mobile-subscriptions-outlook"
"https://www.ericsson.com/en/mobility-report/dataforecasts/mobile-subscriptions-outlook"
"https://gsacom.com/paper/lte-and-5g-subscribers-march-2021-q4/"
"https://gsacom.com/paper/lte-and-5g-subscribers-march-2021-q4/"
"https://www.gsma.com/futurenetworks/wp-content/uploads/2019/03/5G-Implementation-Guideline-v2.0-July-2019.pdf"
"https://www.gsma.com/futurenetworks/wp-content/uploads/2019/03/5G-Implementation-Guideline-v2.0-July-2019.pdf"
"https://www.gsma.com/futurenetworks/wp-content/uploads/2019/03/5G-Implementation-Guideline-v2.0-July-2019.pdf"

[46] D. PAULI. Samsung S6 calls open to man-in-the-middle base
station snooping. The Register, 12, 2015.

[47] S. Rosen, H. Luo, Q. A. Chen, Z. M. Mao, J. Hui, A. Drake,
and K. Lau. Discovering fine-grained RRC state dynamics and
performance impacts in cellular networks. In International
Conference on Mobile Computing and Networking, 2014.

[48] D. Rupprecht, K. Jansen, and C. Pöpper. Putting LTE security
functions to the test: A framework to evaluate implementation
correctness. In USENIX Workshop on Offensive Technologies,
2016.

[49] D. Rupprecht, K. Kohls, T. Holz, and C. Pöpper. Breaking LTE
on layer two. In IEEE Symposium on Security and Privacy,
2019.

[50] D. Rupprecht, K. Kohls, T. Holz, and C. Pöpper. Call me
maybe: Eavesdropping encrypted LTE calls with ReVoLTE. In
USENIX Security Symposium, 2020.

[51] D. Rupprecht, K. Kohls, T. Holz, and C. Pöpper. Imp4gt: imper-
sonation attacks in 4G networks. In Network and Distributed
System Security Symposium, 2020.

[52] A. Shaik, R. Borgaonkar, N. Asokan, V. Niemi, and J.-P. Seifert.
Practical attacks against privacy and availability in 4G/LTE
mobile communication systems. In Network and Distributed
System Security Symposium, 2016.

[53] A. Shaik, R. Borgaonkar, S. Park, and J.-P. Seifert. New vul-
nerabilities in 4G and 5G cellular access network protocols:
exposing device capabilities. In Conference on Security and
Privacy in Wireless and Mobile Networks, 2019.

[54] TESCOM TC-5910D. http://en.tescom.co.kr/
product/product2?code=020101.

[55] Representative statements used for the guideline gener-
ation. https://github.com/SysSec-KAIST/DoLTEst/
blob/main/table7.md.

[56] G.-H. Tu, Y. Li, C. Peng, C.-Y. Li, H. Wang, and S. Lu. Control-
plane protocol interactions in cellular networks. ACM SIG-
COMM Computer Communication Review, 2014.

[57] R.-P. Weinmann. Baseband attacks: Remote exploitation of
memory corruptions in cellular protocol stacks. In USENIX
Workshop on Offensive Technologies, 2012.

[58] Accuver XCAL. http://www.accuver.com/.

[59] H. Yang, S. Bae, M. Son, H. Kim, S. M. Kim, and Y. Kim.
Hiding in plain signal: Physical signal overshadowing attack
on LTE. In USENIX Security Symposium, 2019.

Appendix
A LTE Attack Models
We discuss representative LTE attack models in detail.
FBS mimics a commercial cell tower to lure nearby cellular
devices by operating at a high radio signal power. After a
radio connection is established between the malicious base
station and a victim device, it transmits an adversarial message
to the UE. Because the FBS attacker does not have valid
information to accomplish the AKA procedure with the UE,
she can transmit the control plane messages only before the

UE establishes the security context. Most previous attacks [29,
36, 38, 41, 48, 52, 53] have adopted this threat model, which
includes IMSI catching, UE capability hijacking, and fake
emergency alerts.
MitM Although an MitM attacker operates a malicious base
station as an FBS attacker, she establishes additional radio
connections with a legitimate eNB after a victim connects.
For a legitimate eNB, the attacker impersonates the victim
UE by relaying the victim’s messages. Likewise, the attacker
impersonates the legitimate eNB to the victim UE. MitM
attacker can transmit adversarial messages to the victim UE
even after the UE establishes the security context. This is
because the MitM attacker accomplishes the AKA procedure
by relaying authentication messages of the eNB and the UE.
Although the attacker can transmit messages anytime, she can
only transmit messages with invalid security protection due
to the absence of security keys. Several works [48, 49] have
utilized this threat model.
Signal Injection is an intuitive threat model introduced by
SigOver attack [59]. Rather than establishing a radio connec-
tion with the victim, the signal injection attacker precisely
overwrites the signal containing an adversarial message in the
physical domain. Unlike the above threat models, the attacker
neither requires the victim UE to connect to her FBS nor to
relay messages between UE and an eNB. Similar to the MitM
attack, the signal injection attacker can inject adversarial con-
trol plane messages to the victim UE at any time. The attacker
can pass the authentication procedure by allowing the victim
UE to communicate with legitimate eNB.

B Handling Silent Test Message Acceptance
In this section, we describe how we identify the test mes-
sages being accepted or rejected by the UE via ADB/DM if
a UE has no corresponding response (i.e., Attach reject, EMM
information, and RRCConnectionRelease).
EMM information. We use ADB to determine whether the
test case of EMM information is accepted by the UE. This is be-
cause EMM information is used for changing NITZ information,
which ADB can monitor by using date ADB command.
Attach reject. We use DM to determine whether the test
cases of Attach reject are accepted by the UE. The UE’s cor-
responding action to the legitimate Attach reject is to changes
its EMM state to DEREGISTERED which the NAS specifi-
cation defines. We monitor such state changes by using DM
tools, which show the UE’s current EMM state. For example,
when the state of UE is changed, the chipset produces DM
logs notifying the current UE state information.
RRC connection release. We use DM to identify the UE’s
acceptance to the test message of RRCConnectionRelease. Once
the UE accepts the RRCConnectionRelease, it destroys radio con-
nection to eNB including all radio bearers and signaling radio
bearers. Its RRC state is then changed to RRC IDLE, which
we can monitor by DM.

USENIX Association 31st USENIX Security Symposium 1341

http://en.tescom.co.kr/product/product2?code=020101
http://en.tescom.co.kr/product/product2?code=020101
https://github.com/SysSec-KAIST/DoLTEst/blob/main/table7.md
https://github.com/SysSec-KAIST/DoLTEst/blob/main/table7.md
http://www.accuver.com/

Table 5: Generated guidelines and the corresponding number of test cases. Note that if the guideline involves two IEs (i.e., handover procedure by using
RRCConnectionReconfiguration), DOLTEST adds both IEs in generating test cases. We omitted non-trivial IE values for brevity. The * represents the wildcard
explained in §5.2.2. We used RRC specification version 15.10.0 NAS specification version 16.5.1.

Guideline
Protocol No. State Security Header Type Message Type IE MAC Reference # of test cases

for each state Page #

1 * N/A RRCConnectionReconfiguration drb-ToAddModList: {...} * A.6, 5.3.1.1 in [7] 2 68p
2 * N/A RRCConnectionReconfiguration srb-ToAddModList: {SRB2} * A.6, 5.3.1.1 in [7] 2 39p
3 * N/A RRCConnectionReconfiguration measConfig: {...} * A.6, 5.5.5.1 in [7] 2 68p

4 * N/A RRCConnectionReconfiguration mobilityControlInfo: {...} * A.6, 5.6.5.1 in [7] 2 918p, 72psecurityConfigHO: {...}
5 * N/A RRCConnectionRelease ... * A.6 in [7] 2 918p
6 * N/A SecurityModeCommand integrityProtection: {EIA1, EIA2, EIA3}c * A.6, 5.3.1.2 in [7] 10 70p
7 * N/A UECapabilityEnquiry ... * A.6, 5.6.3.2 in [7] 2 230p
8 * N/A counterCheck ... * A.6 in [7] 2 918p
9 * N/A UEInformationRequest ... * A.6, 5.6.5.2 in [7] 2 919p

RRC

10 * N/A DLInformationTransfer ... * A.6 in [7] 2 918p

11 * * Identity Request Identity Type2: {IMSI}c * 4.4.4.2 in [4] 124 50p, 51p
12 * * Security Mode Command integrityProtAlgorithm: {EIA1, EIA2, EIA3}c * 4.4.4.1, 4.4.4.2 in [4] 155 50p
13 * * GUTI Reallocation Command ... * 4.4.4.2 in [4] 31 50p, 51p
14 * * EMM Information ... * 4.4.4.2 in [4] 31 50p, 51p
15 * * Downlink NAS Transport ... * 4.4.4.2 in [4] 31 50p, 51p
16 * * Attach Reject EMM cause:{#25} * 4.4.4.2, 5.5.1.2.5 in [4] 31 50p, 51p, 129p

NAS

17 * * Attach Accept ... * 4.4.4.2 in [4] 31 50p, 51p

Table 6: A full list of tested devices including device name, phone vendor, baseband vendor, chipset model, firmware version, last updated date, and
vulnerabilities of each. We used the latest firmware of a device when we started testing it and have not patched it since then to reproduce our experiments. Please
refer to Tab. 3 and §6.1 for a detailed description of the implementation flaws.

Name Phone
vendor

Baseband
vendor

Chipset
model

Firmware
version

Last update
(YYMM) Implementation flaw

1 iPhone 6 Apple Qualcomm MDM9625 7.21.00 / 7.80.04 1810/2101 S1,S3,I1 / S2,S3,I1
2 iPhone 8 Apple Intel XMM 7480 4.02.01 2103 I3
3 iPhone XS Apple Intel XMM 7560 1.03.08 1902 I3
4 iPhone 12 Pro Apple Qualcomm Snapdragon X55 1.62.11 2104 -
5 Y9 Huawei HiSilicon Kirin 659 21C60B269S003C000 1806 S3,I3
6 P10 Lite Huawei HiSilicon Kirin 658 21C60B268S000C000 1711 I3
7 P10 Huawei HiSilicon Kirin 960 21C30B323S003C000 1805 I3
8 Mate 10 Pro Huawei HiSilicon Kirin 970 21C10B551S000C000 1801 I3
9 P20 pro Huawei HiSilicon Kirin 970 21C20B369S007C000 1904 I3

10 Mate 20 pro Huawei HiSilicon Kirin 980 21C10B687S000C000 1812 I3
11 X401 LG Mediatek MT6750 MOLY.LR11.W1552.MD.TC01.LVSF.SP.V1.P22 1802 S2,M1
12 X6 LG Mediatek Helio P22 MT6762 MOLY.LR12A.R3.TC01.PIE.SP.V1.P10.T12 1907 S2
13 K50 LG Mediatek Helio P22 MT6762 MOLY.LR12A.R3.TC01.PIE.SP.V1.P26 2012 S2
14 G6 LG Qualcomm MSM8996 Snapdragon 821 MPSS.TH.2.0.1.c3.1-00024-M8996FAAAANAZM-1.142344.1.143233.1 1804 S1,S2,S3
15 V35 ThinQ LG Qualcomm SDM845 Snapdragon 845 MPSS.AT.4.0.c2.9-00057-SDM845_GEN_PACK-1 1901 S1,S2
16 G7 ThinQ LG Qualcomm SDM845 Snapdragon 845 MPSS.AT.4.0.c2.9-00088-SDM845_GEN_PACK-1.299473 2008 S2
17 G8 ThinQ LG Qualcomm SM8150 Snapdragon 855 MPSS.HE.1.0.c4-00104-SM8150_GEN_PACK-1 2101 S2
18 V50 LG Qualcomm SM8150 Snapdragon 855 MPSS.HE.1.5.c4-00270.1-SM8150_GENFUSION_PACK-1.215515.14 1909 S2
19 Oppo find X OPPO Qualcomm SDM845 Snapgragon 845 Q_V1_P14,Q_V1_P14 1808 S1
20 Galaxy S4 Samsung Qualcomm MSM8974 Snapdragon 800 E330KKKUCNG5 1609 S1,S2,S3,M1,M2,I1,I2,I3
21 Galaxy S5 Samsung Qualcomm MSM8974AC Snapdragon 801 G900VVRU1ANI2 1411 S1,S3,M1,M2,I2
22 Galaxy S5 A Samsung Qualcomm APQ8084 Snapdragon 805 G906LKLU1CPK2 1612 S1,S2,S3,M2,I1,I2,I3
23 Galaxy Note5 Samsung Samsung Exynos 7 (7420) N920SKSU2DQH2 1708 S2,M1,I2
24 Galaxy S6 Samsung Samsung Exynos 7 (7420) G920SKSU3EQC9 1704 S2,M1,I3
25 Galaxy Note FE Samsung Samsung Exynos 8 (8890) N935JJJU4CTJ1 2102 S2,M1
26 Galaxy Note8 Samsung Samsung Exynos 9 (8895) N950NKOU4CRH2 1810 S2,M1
27 Galaxy S8 Samsung Qualcomm MSM8998 Snapdragon 835 G950U1UES5CSB2 1902 S1,S2,S3
28 Galaxy Note9 Samsung Samsung Exynos 9 (9810) N960NKOU3DSLA 1912 S2,M1
29 Galaxy S10 Samsung Samsung Exynos 9 (9820) G977NKOU2BTA2 / G977NKOU4DK1 2001/2011 S2,M1,I1,I2 / S2,M1,I1
30 Galaxy S10 Samsung Qualcomm SM8150 Snapdragon 855 G977UVRS3YSJK 1911 -
31 Galaxy A31 Samsung Mediatek Helio P65 MT6768 A315NKOU1BUA1 2102 S2
32 Galaxy S20 Samsung Qualcomm SM8250 Snapdragon 865 G981NKSU1CTKD 2011 -
33 Galaxy A71 Samsung Samsung Exynos 9 (980) A716SKSU1ATF4 / A716SKSU3BTL2 2006/2012 S2,M1,I1,I2 / S2,M1,I1
34 Galaxy Note20 Samsung Qualcomm SM8250 Snapdragon 865 N986NKSU1CUC9 2103 -
35 Redmi 5 Xiaomi Qualcomm SDM450 Snapdragon 450 MPSS.TA.2.3.c1-00522-8953_GEN_PACK-1_V042 1712 S1,S3
36 Redmi note 4x Xiaomi Qualcomm MSM8953 Snapdragon 625 953_GEN_PACK-1.122638.1.123338.1 1712 S1,S3
37 Mi Max 3 Xiaomi Qualcomm SDM636 Snapdragon 636 AT32-00672-0812_2359_46aa9a7 1807 S1
38 Mi 5S Xiaomi Qualcomm MSM8996 Snapdragon 821 TH20c1.9-0612_1733_9fe7ce8 1805 S1,S3
39 Mi Mix 2 Xiaomi Qualcomm MSM8998 Snapdragon 835 AT20-0608_2116_6c4a86b 1805 S1,S3
40 Black Shark Xiaomi Qualcomm SDM845 Snapdragon 845 00888-SDM845_GEN_PACK-1.163713.1 1811 S1
41 POCOphone F1 Xiaomi Qualcomm SDM845 Snapdragon 845 AT4.0.c2.6-144-1008_1436_e3055ba 1809 S1
42 ZTE Blade V8 Pro ZTE Qualcomm MSM8953 Snapdragon 625 -8953_GEN_PACK-1.79091.1.79899.1 1612 S1,S3
43 ZTE Axon 7 ZTE Qualcomm MSM8996 Snapdragon 820 TH.2.0.c1.9-00104-M8996FAAAANAZM 1712 S1,S3

1342 31st USENIX Security Symposium USENIX Association

	Introduction
	Background
	LTE Network Architecture
	Control Plane Operation
	Attack Models for UE in LTE

	Problems of Prior Negative Testing
	Lack of Negative Testing in Specification
	Limitations of Previous Works

	Overview
	Goals
	Challenges in Negative Testing
	Our Approach

	Design
	Security Abstracted States
	Specification-driven Message Generation
	Manual Specification Analysis
	Guideline generation
	Over-approximated test case generation

	Over-the-Air Testing
	Deterministic Oracle Building

	Negative Testing Results
	Implementation Flaws
	Mishandling security header type
	Mishandling message type
	Mishandling IE and value.

	Ambiguous Statements in Specification
	Unspecified Behaviors in Specification

	Attack Scenarios
	Attacks using Implementation Flaws
	NITZ (Network Identity and Time Zone) spoofing
	SMS injection
	Eavesdropping and manipulating data traffic

	Fingerprinting

	Discussion & Limitations
	Related Work
	Concluding Remarks
	LTE Attack Models
	Handling Silent Test Message Acceptance

